4,923 research outputs found

    Lessons learnt from two decades of graduate tracer research: Recommendations for the South African context

    Get PDF
    Graduate tracer studies may be an appropriate research method for responding to various problems in the South African higher education context, including difficulties associated with higher education transformation and graduate employability. However, there is little context-relevant literature on the implementation of the various methodologies that may be used, and no assessment of the relevance of these methods for the South African context. In an attempt to synthesise graduate tracer study research, and to recommend potential models for conducting graduate tracer studies in South Africa, a systematic quantitative literature review was conducted of 23 graduate tracer studies from 13 countries, published between 1995 and 2016. The findings from this review point to three potential models for implementation in the South African context: a large-scale model, a smaller-scale model, and a mixed-method model. These recommended models may allow for the more efficient and effective implementation of graduate tracer studies across the South African context

    Van der Waals Frictional Drag induced by Liquid Flow in Low- Dimensional Systems

    Get PDF
    We study the van der Waals frictional drag force induced by liquid flow in low-dimensional systems (2D and 1D electron systems, and 2D and 1D channels with liquid). We find that for both 1D and 2D systems, the frictional drag force induced by liquid flow may be several orders of magnitude larger than the frictional drag induced by electronic current.Comment: 10 pages, 4 figure

    Time, institutional support and quality of decision making in child protection:A cross-country analysis

    Get PDF
    This paper examines perceptions of time and institutional support for decision making and staff confidence in child welfare staffs ultimate decisions – examining differences and similarities between and within the service-oriented Nordic countries (Norway and Finland) and the risk-oriented Anglo-American countries (England and California). The study identifies a high degree of work pressure across all the countries, lines of predominantly vertical institutional support and relatively high confidence in decisions. Finland stands out with higher perceived work pressure and with a horizontal support line, whereas England stands out with workers having a lower degree of confidence in their own and others’ decisions

    Sediment resuspension and erosion by vortex rings

    Get PDF
    Particle resuspension and erosion induced by a vortex ringinteracting with a sediment layer was investigated experimentally using flow visualization (particle image velocimetry), high-speed video, and a recently developed light attenuation method for measuring displacements in bed level. Near-spherical sediment particles were used throughout with relative densities of 1.2–7 and diameters (d)(d) ranging between 90 and 1600 μm1600 μm. Attention was focused on initially smooth, horizontal bedforms with the vortex ring aligned to approach the bed vertically. Interaction characteristics were investigated in terms of the dimensionless Shields parameter, defined using the vortex-ring propagation speed. The critical conditions for resuspension (whereby particles are only just resuspended) were determined as a function of particle Reynolds number (based on the particle settling velocity and dd). The effects of viscous damping were found to be significant for d/δ<15d/δ<15, where δδ denotes the viscous sublayer thickness. Measurements of bed deformation were obtained during the interaction period, for a range of impact conditions. The (azimuthal) mean crater profile is shown to be generally self-similar during the interaction period, except for the most energetic impacts and larger sediment types. Loss of similarity occurs when the local bed slope approaches the repose limit, leading to collapse. Erosion, deposition, and resuspension volumes are analyzed as a function interaction time, impact condition, and sediment size

    Entanglement generation in persistent current qubits

    Full text link
    In this paper we investigate the generation of entanglement between two persistent current qubits. The qubits are coupled inductively to each other and to a common bias field, which is used to control the qubit behaviour and is represented schematically by a linear oscillator mode. We consider the use of classical and quantum representations for the qubit control fields and how fluctuations in the control fields tend to suppress entanglement. In particular, we demonstrate how fluctuations in the bias fields affect the entanglement generated between persistent current qubits and may limit the ability to design practical systems.Comment: 7 pages, 4 figures, minor changes in reply to referees comment

    Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation

    Full text link
    In this paper we introduce a design for an optical topological cluster state computer constructed exclusively from a single quantum component. Unlike previous efforts we eliminate the need for on demand, high fidelity photon sources and detectors and replace them with the same device utilised to create photon/photon entanglement. This introduces highly probabilistic elements into the optical architecture while maintaining complete specificity of the structure and operation for a large scale computer. Photons in this system are continually recycled back into the preparation network, allowing for a arbitrarily deep 3D cluster to be prepared using a comparatively small number of photonic qubits and consequently the elimination of high frequency, deterministic photon sources.Comment: 19 pages, 13 Figs (2 Appendices with additional Figs.). Comments welcom

    Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond

    Get PDF
    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a possible intermediate step towards the realization of quantum repeaters. Despite its relaxing some of the requirements on quantum memories, the choice of memory in relation to the layout of the setup and the protocol has a stark effect on our ability to beat existing no-memory systems. Here, we investigate the suitability of nitrogen vacancy (NV) centers, as quantum memories, in MA-MDI-QKD. We particularly show that moderate cavity enhancement is required for NV centers if we want to outperform no-memory QKD systems. Using system parameters mostly achievable by today's state of the art, we then anticipate some total key rate advantage in the distance range between 300 and 500 km for cavity-enhanced NV centers. Our analysis accounts for major sources of error including the dark current, the channel loss, and the decoherence of the quantum memories

    Memory-Assisted Quantum Key Distribution with a Single Nitrogen-Vacancy Center

    Get PDF
    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) is a promising scheme that aims to improve the rate-versus-distance behavior of a QKD system by using the state-of-the-art devices. It can be seen as a bridge between current QKD links to quantum repeater based networks. While, similar to quantum repeaters, MA-MDI-QKD relies on quantum memory (QM) units, the requirements for such QMs are less demanding than that of probabilistic quantum repeaters. Here, we present a variant of MA-MDI-QKD structure that relies on only a single physical QM: a nitrogen-vacancy center embedded into a cavity where its electronic spin interacts with photons and its nuclear spin is used for storage. This enables us to propose a simple but efficient MA-MDI-QKD scheme resilient to memory errors and capable of beating, in terms of rate and reach, existing QKD demonstrations. We also show how we can extend this setup to a quantum repeater system, reaching, thus, larger distances
    • …
    corecore