160 research outputs found

    Spectropolarimetric multi line analysis of stellar magnetic fields

    Full text link
    In this paper we study the feasibility of inferring the magnetic field from polarized multi-line spectra using two methods: The pseudo line approach and The PCA-ZDI approach. We use multi-line techniques, meaning that all the lines of a stellar spectrum contribute to obtain a polarization signature. The use of multiple lines dramatically increases the signal to noise ratio of these polarizations signatures. Using one technique, the pseudo-line approach, we construct the pseudo-line as the mean profile of all the individual lines. The other technique, the PCA-ZDI approach proposed recently by Semel et al. (2006) for the detection of polarized signals, combines Principle Components Analysis (PCA) and the Zeeman Do ppler Imaging technique (ZDI). This new method has a main advantage: the polarized signature is extracted using cross correlations between the stellar spectra nd functions containing the polarization properties of each line. These functions are the principal components of a database of synthetic spectra. The synthesis of the spectra of the database are obtained using the radiative transfer equations in LTE. The profiles built with the PCA-ZDI technique are denominated Multi-Zeeman-Signatures. The construction of the pseudo line as well as the Multi-Zeeman-Signatures is a powerful tool in the study of stellar and solar magnetic fields. The information of the physical parameters that governs the line formation is contained in the final polarized profiles. In particular, using inversion codes, we have shown that the magnetic field vector can be properly inferred with both approaches despite the magnetic field regime.Comment: Accepted for publication in Astronomy and Astrophysic

    The coronal structure of AB Dor determined from contemporaneous Doppler imaging and X-ray spectroscopy

    Get PDF
    We obtain contemporaneous observations of the surface and corona of AB Dor using ground-based circularly polarised spectra from the Anglo-Australian Telescope and X-ray data from the Chandra satellite. The ground-based data are used to construct surface magnetic field maps, which are extrapolated to produce detailed models of the quiescent corona. The X-ray data serve as a new test for the validity of these coronal models. The high coronal density and complex multi-polar magnetic field indicate a compact X-ray corona, which is concentrated close to the surface, with a height, H~0.3-0.4R*. There is also significant correlation between the surface and coronal active region locations. At this epoch AB Dor appears to possess one very large active longitude region; displaying enhanced activity in the form of large dark spots, strong magnetic fields and chromospheric emission. Finally, the level of rotational modulation and shape of the X-ray lightcurve depend on the distribution of magnetic field in the obscured hemisphere. The models that best reproduce the rotational modulation observed in the contemporaneous Chandra X-ray lightcurve and spectra require the magnetic field in the obscured hemisphere to be of the same polarity as that in the observed hemisphere. The Sun shows different behaviour, with the leading polarity reversed in the opposite hemisphere. The X-ray observations provide a unique constraint on the magnetic structure in the obscured hemisphere.Comment: 17 pages, 14 figures, accepted by MNRAS. This version has cropped figures. For a preprint with the original figures please go to http://star-www.st-and.ac.uk/~gajh/papers0

    The first magnetic maps of a pre-main sequence binary star system - HD 155555

    Get PDF
    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images. Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between the 2004 and 2007 epochs. This is accompanied by an apparent shift in the location of magnetic energy from the azimuthal to radial field. We suggest that this could be indicative of a magnetic activity cycle. We use the radial magnetic maps to extrapolate the coronal field (by assuming a potential field) for each star individually - at present ignoring any possible interaction. The secondary star is found to exhibit an extreme tilt (~75 deg) of its large scale magnetic field to that of its rotation axis for both epochs. The field complexity that is apparent in the surface maps persists out to a significant fraction of the binary separation. Any interaction between the fields of the two stars is therefore likely to be complex also. Modelling this would require a full binary field extrapolation.Comment: 17 pages, 12 figures, accepted for publication in MNRA

    Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    Get PDF
    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced between poloidal and toroidal components. However we find tentative evidence of a change in the poloidal/toroidal ratio in 2009 with the poloidal component becoming more dominant. At all epochs the radial magnetic field is predominantly non-axisymmetric while the azimuthal field is predominantly axisymmetric with a ring of positive azimuthal field around the pole similar to that seen on other active stars.Comment: 18 pages, 17 figures, accepted by MNRA

    Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales

    Get PDF
    Journal ArticlePublished version used with permision of the publisher.The predictability of the quasi-biennial oscillation (QBO) is examined in initialized climate forecasts extending out to lead times of years. We use initialized retrospective predictions made with coupled ocean-atmosphere climate models that have an internally generated QBO. We demonstrate predictability of the QBO extending more than 3 years into the future, well beyond timescales normally associated with internal atmospheric processes. Correlation scores with observational analyses exceed 0.7 at a lead time of 12 months. We also examine the variation of predictability with season and QBO phase and find that skill is lowest in winter. An assessment of perfect predictability suggests that higher skill may be achievable through improved initialization and climate modeling of the QBO, although this may depend on the realism of gravity wave source parameterizations in the models. Finally, we show that skilful prediction of the QBO itself does not guarantee predictability of the extratropical winter teleconnection that is important for surface winter climate prediction. Key Points The QBO is skilfully predicted in seasonal-decadal forecast systems Further improvements in predictions of the QBO are possible The QBO winter surface teleconnection is reproduced with mixed succes
    • 

    corecore