We present the first maps of the surface magnetic fields of a pre-main
sequence binary system. Spectropolarimetric observations of the young, 18 Myr,
HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian
Telescope in 2004 and 2007. Both datasets are analysed using a new binary
Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the
contribution of each component to the observed circularly polarised spectra.
Stellar brightness maps are also produced for HD 155555 and compared to
previous Doppler images. Our radial magnetic maps reveal a complex surface
magnetic topology with mixed polarities at all latitudes. We find rings of
azimuthal field on both stars, most of which are found to be non-axisymmetric
with the stellar rotational axis. We also examine the field strength and the
relative fraction of magnetic energy stored in the radial and azimuthal field
components at both epochs. A marked weakening of the field strength of the
secondary star is observed between the 2004 and 2007 epochs. This is
accompanied by an apparent shift in the location of magnetic energy from the
azimuthal to radial field. We suggest that this could be indicative of a
magnetic activity cycle. We use the radial magnetic maps to extrapolate the
coronal field (by assuming a potential field) for each star individually - at
present ignoring any possible interaction. The secondary star is found to
exhibit an extreme tilt (~75 deg) of its large scale magnetic field to that of
its rotation axis for both epochs. The field complexity that is apparent in the
surface maps persists out to a significant fraction of the binary separation.
Any interaction between the fields of the two stars is therefore likely to be
complex also. Modelling this would require a full binary field extrapolation.Comment: 17 pages, 12 figures, accepted for publication in MNRA