203 research outputs found

    Real-time propagator eigenstates

    Get PDF
    Obtaining a numerical solution of the time-dependent Schrödinger equation requires an initial state for the time evolution. If the system Hamiltonian can be split into a time-independent part and a time-dependent perturbation, the initial state is typically chosen as an eigenstate of the former. For propagation using approximate methods such as operator splitting, we show that both imaginary-time evolution and diagonalization of the time-independent Hamiltonian produce states that are not exactly stationary in absence of the perturbation. In order to avoid artifacts from these non-stationary initial states, we propose an iterative method for calculating eigenstates of the real-time propagator. We compare the performance of different initial states by simulating ionization of a model atom in a short laser pulse and we demonstrate that much lower noise levels can be achieved with the real-time propagator eigenstates

    Water Solubilization Using Nonionic Surfactants from Renewable Sources in Microemulsion Systems

    Get PDF
    In this study the effect of temperature, NaCl and oils (hydrocarbons: C8–C16) on the formation and solubilization capacity of the systems of oil/monoacylglycerols (MAG):ethoxylated fatty alcohols (CEO20)/propylene glycol (PG)/water was investigated. The effects of the surfactant mixture on the phase behavior and the concentration of water or oil in the systems were studied at three temperatures (50, 55, 60 °C) and with varied NaCl solutions (0.5; 2; 11%). Electrical conductivity measurement, FTIR spectroscopy and the DSC method were applied to determine the structure and type of the microemulsions formed. The dimension of the microemulsion droplets was characterized by dynamic light scattering. It has been stated that the concentration of CEO20 has a strong influence on the shape and extent of the microemulsion areas. Addition of a nonionic surfactant to the mixture with MAG promotes an increase in the area of microemulsion formation in the phase diagrams, and these areas of isotropic region did not change considerably depending on the temperature, NaCl solution and oil type. It was found that, depending on the concentration of the surfactant mixture, it was possible to obtain U-type microemulsions with dispersed particles size distribution ranging from 25 to 50 nm and consisting of about 30–32% of the water phase in the systems. The conditions under which the microemulsion region was found (electrolyte and temperature—insensitive, comparatively low oil and surfactant concentration) could be highly useful in detergency

    The internal structure of poly(methyl methacrylate) latexes in nonpolar solvents

    Get PDF
    Hypothesis: Poly(methyl methacrylate) (PMMA) latexes in nonpolar solvents are an excellent model system to understand phenomena in low dielectric media, and understanding their internal structure is critical to characterizing their performance in both fundamental studies of colloidal interactions and in potential industrial applications. Both the PMMA cores and the poly(12-hydroxystearic acid) (PHSA) shells of the latexes are known to be penetrable by solvent and small molecules, but the relevance of this for the properties of these particles is unknown. Experiments: These particles can be prepared in a broad range of sizes, and two PMMA latexes dispersed in n-dodecane (76 and 685 nm in diameter) were studied using techniques appropriate to their size. Small-angle scattering (using both neutrons and X-rays) was used to study the small latexes, and analytical centrifugation was used to study the large latexes. These studies enabled the calculation of the core densities and the amount of solvent in the stabilizer shells for both latexes. Both have consequences on interpreting measurements using these latexes. Findings: The PHSA shells are highly solvated (∼85% solvent by volume), as expected for effective steric stabilizers. However, the PHSA chains do contribute to the intensity of neutron scattering measurements on concentrated dispersions and cannot be ignored. The PMMA cores have a slightly lower density than PMMA homopolymer, which shows that only a small free volume is required to allow small molecules to penetrate into the cores. Interestingly, the observations are essentially the same, regardless of the size of the particle; these are general features of these polymer latexes. Despite the latexes being used as a model physical system, the internal chemical structure is complex and must be fully considered when characterizing them

    Relationship Between Anti-DFS70 Autoantibodies and Oxidative Stress

    Get PDF
    Background: The anti-DFS70 autoantibodies are one of the most commonly and widely described agent of unknown clinical significance, frequently detected in healthy individuals. It is not known whether the DFS70 autoantibodies are protective or pathogenic. One of the factors suspected of inducing the formation of anti-DFS70 antibodies is increased oxidative stress. We evaluated the coexistence of anti-DFS70 antibodies with selected markers of oxidative stress and investigated whether these antibodies could be considered as indirect markers of oxidative stress. Methods: The intensity of oxidative stress was measured in all samples via indices of free-radical damage to lipids and proteins such as total oxidant status (TOS), concentrations of lipid hydroperoxides (LPH), lipofuscin (LPS), and malondialdehyde (MDA). The parameters of the non-enzymatic antioxidant system, such as total antioxidant status (TAS) and uric acid concentration (UA), were also measured, as well as the activity of superoxide dismutase (SOD). Based on TOS and TAS values, the oxidative stress index (OSI) was calculated. All samples were also tested with indirect immunofluorescence assay (IFA) and 357 samples were selected for direct monospecific anti DFS70 enzyme-linked immunosorbent assay (ELISA) testing. Results: The anti-DFS70 antibodies were confirmed by ELISA test in 21.29% of samples. Compared with anti-DFS70 negative samples we observed 23% lower concentration of LPH (P =.038) and 11% lower concentration of UA (P =.005). TOS was 20% lower (P =.014). The activity of SOD was up to 5% higher (P =.037). The Pearson correlation showed weak negative correlation for LPH, UA, and TOS and a weak positive correlation for SOD activity. Conclusion: In samples positive for the anti-DFS70 antibody a decreased level of oxidative stress was observed, especially in the case of samples with a high antibody titer. Anti-DFS70 antibodies can be considered as an indirect marker of reduced oxidative stress or a marker indicating the recent intensification of antioxidant processes

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
    corecore