12,472 research outputs found

    Tunnel diode circuit used as nanosecond-range time marker

    Get PDF
    Simple tunnel diode time marker circuit determines the time at which an event occurs in a scintillation crystal. It is capable of triggering at voltages as low as the noise level of a 10-stage PM tube

    Overview of the INEX 2009 Interactive Track

    Get PDF
    In the paper we present the organization of the INEX 2009 interactive track. For the 2009 experiments the iTrack has gathered data on user search behavior in a collection consisting of book metadata taken from the online bookstore Amazon and the social cataloguing application LibraryThing. Thus the data are more structured than in previous years’ experiments, consisting of traditional bibliographic metadata, user-generated tags and reviews and promotional texts and reviews from publishers and professional reviewers. Through monitoring searches based on three different task types the experiment aims at studying how users interact with highly structured data. We describe the methods used for data collection and the tasks performed by the participants. Some preliminary results of the interaction analysis are reported

    Structural Refinement for the Modal nu-Calculus

    Get PDF
    We introduce a new notion of structural refinement, a sound abstraction of logical implication, for the modal nu-calculus. Using new translations between the modal nu-calculus and disjunctive modal transition systems, we show that these two specification formalisms are structurally equivalent. Using our translations, we also transfer the structural operations of composition and quotient from disjunctive modal transition systems to the modal nu-calculus. This shows that the modal nu-calculus supports composition and decomposition of specifications.Comment: Accepted at ICTAC 201

    Extraction efficiency of drifting electrons in a two-phase xenon time projection chamber

    Full text link
    We present a measurement of the extraction efficiency of quasi-free electrons from the liquid into the gas phase in a two-phase xenon time-projection chamber. The measurements span a range of electric fields from 2.4 to 7.1 kV/cm in the liquid xenon, corresponding to 4.5 to 13.1 kV/cm in the gaseous xenon. Extraction efficiency continues to increase at the highest extraction fields, implying that additional charge signal may be attained in two-phase xenon detectors through careful high-voltage engineering of the gate-anode region

    Calibration of a two-phase xenon time projection chamber with a 37^{37}Ar source

    Full text link
    We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and at 2.8 keV in both the light and charge channels using a 37^{37}Ar source that is directly released into the detector. We map the light and charge yields as a function of electric drift field. For the 2.8 keV peak, we calculate the Thomas-Imel box parameter for recombination and determine its dependence on drift field. For the same peak, we achieve an energy resolution, Eσ/EmeanE_{\sigma}/E_{mean}, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric drift fields.Comment: 12 pages, 7 figure

    Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2

    Full text link
    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic system. This enables values for the principal exchange constants to be determined, which suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let

    Structure and Mass of a Young Globular Cluster in NGC 6946

    Get PDF
    Using the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we have imaged a luminous young star cluster in the nearby spiral galaxy NGC 6946. The cluster has an absolute visual magnitude M(V)=-13.2, comparable to the brightest young `super-star clusters' in the Antennae merger galaxy. UBV colors indicate an age of about 15 Myr. The cluster has a compact core (core radius = 1.3 pc), surrounded by an extended envelope. We estimate that the effective radius (Reff) = 13 pc, but this number is uncertain because the outer parts of the cluster profile gradually merge with the general field. Combined with population synthesis models, the luminosity and age of the cluster imply a mass of 8.2x10^5 Msun for a Salpeter IMF extending down to 0.1 Msun, or 5.5x10^5 Msun if the IMF is log-normal below 0.4 Msun. Depending on model assumptions, the central density of the cluster is between 5300 Msun pc^-3 and 17000 Msun pc^-3, comparable to other high-density star forming regions. We also estimate a dynamical mass for the cluster, using high-dispersion spectra from the HIRES spectrograph on the Keck I telescope. The velocity dispersion is 10.0 +/- 2.7 km/s, implying a total cluster mass within 65 pc of (1.7 +/- 0.9) x 10^6 Msun. Comparing the dynamical mass with the mass estimates based on the photometry and population synthesis models, the mass-to-light ratio is at least as high as for a Salpeter IMF extending down to 0.1 Msun, although a turn-over in the IMF at 0.4 Msun is still possible within the errors. The cluster will presumably remain bound, evolving into a globular cluster-like object.Comment: 33 pages, including 10 figures and 3 tables. Accepted for publication in the Astrophysical Journa

    Spectroscopic Constraints on the Form of the Stellar Cluster Mass Function

    Get PDF
    This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6*10^5 Msun is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a (environmentally dependent) truncation in the cluster mass functions.Comment: 6 pages, 5 figures, in press, A&A Research Note

    Second Order Perturbations of a Macroscopic String; Covariant Approach

    Get PDF
    Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessaary for a consistent computation of the energy. We also quantize the perturbations and derive the mass-formula up to second order in perturbations for an observer using world-sheet time τ\tau . The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be non-diagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass-spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.Comment: New discussion about the quantum mass-spectrum in chapter

    Topology Optimization and 3D printing of Large Deformation Compliant Mechanisms for Straining Biological Tissues

    Full text link
    This paper presents a synthesis approach in a density-based topology optimization setting to design large deformation compliant mechanisms for inducing desired strains in biological tissues. The modelling is based on geometrical nonlinearity together with a suitably chosen hypereleastic material model, wherein the mechanical equilibrium equations are solved using the total Lagrangian finite element formulation. An objective based on least-square error with respect to target strains is formulated and minimized with the given set of constraints and the appropriate surroundings of the tissues. To circumvent numerical instabilities arising due to large deformation in low stiffness design regions during topology optimization, a strain-energy based interpolation scheme is employed. The approach uses an extended robust formulation i.e. the eroded, intermediate and dilated projections for the design description as well as variation in tissue stiffness. Efficacy of the synthesis approach is demonstrated by designing various compliant mechanisms for providing different target strains in biological tissue constructs. Optimized compliant mechanisms are 3D-printed and their performances are recorded in a simplified experiment and compared with simulation results obtained by a commercial software.Comment: 23 pages, 14 figure
    corecore