1,844 research outputs found
Comparison of 35 and 50 {\mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2
We report results from the testing of 35 {\mu}m thick Ultra-Fast Silicon
Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison
of these new results to data reported before on 50 {\mu}m thick UFSD produced
by HPK. The 35 {\mu}m thick sensors were irradiated with neutrons to fluences
of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested
pre-irradiation and post-irradiation with minimum ionizing particles (MIPs)
from a 90Sr \b{eta}-source. The leakage current, capacitance, internal gain and
the timing resolution were measured as a function of bias voltage at -20C and
-27C. The timing resolution was extracted from the time difference with a
second calibrated UFSD in coincidence, using the constant fraction method for
both. Within the fluence range measured, the advantage of the 35 {\mu}m thick
UFSD in timing accuracy, bias voltage and power can be established.Comment: 9 pages, 9 figures, HSTD11 Okinawa. arXiv admin note: text overlap
with arXiv:1707.0496
Angular Dependence of Neutrino Flux in KM3 Detectors in Low Scale Gravity Models
Cubic kilometer neutrino telescopes are capable of probing fundamental
questions of ultra-high energy neutrino interactions. There is currently great
interest in neutrino interactions caused by low-scale, extra dimension models.
Above 1 PeV the cross section in low scale gravity models rises well above the
total Standard Model cross section. We assess the observability of this effect
in the 1 PeV - 100 PeV energy range of kilometer-scale detectors with several
new points of emphasis that hinge on enhanced neutral current cross sections. A
major point is the importance of ``feed-down'' regeneration of upward neutrino
flux, driven by new-physics neutral current interactions in the flux evolution
equations. Feed-down is far from negligible, and it is essential to include its
effect. We then find that the angular distribution of events has high
discriminating value in separating models. In particular the ``up-to-down''
ratio between upward and downward-moving neutrino fluxes is a practical
diagnostic tool which can discriminate between models in the near future. The
slope of the angular distribution, in the region of maximum detected flux, is
also substantially different in low-scale gravity and the Standard Model. These
observables are only weakly dependent on astrophysical flux uncertainties. We
conclude that angular distributions can reveal a breakdown of the Standard
Model and probe the new physics beyond, as soon as data become available.Comment: 25 pages, 6 figures, discussion of calculations expanded, references
adde
Extensive air showers with TeV-scale quantum gravity
One of the possible consequences of the existence of extra degrees of freedom
beyond the electroweak scale is the increase of neutrino-nucleon cross sections
() beyond Standard Model predictions. At ultra-high energies
this may allow the existence of neutrino-initiated extensive air showers. In
this paper, we examine the most relevant observables of such showers. Our
analysis indicates that the future Pierre Auger Observatory could be
potentially powerful in probing models with large compact dimensions.Comment: 7 pages revtex, 5 eps fig
Tests of CPT Invariance at Neutrino Factories
We investigate possible tests of CPT invariance on the level of event rates
at neutrino factories. We do not assume any specific model but phenomenological
differences in the neutrino-antineutrino masses and mixing angles in a Lorentz
invariance preserving context, such as it could be induced by physics beyond
the Standard Model. We especially focus on the muon neutrino and antineutrino
disappearance channels in order to obtain constraints on the
neutrino-antineutrino mass and mixing angle differences; we found, for example,
that the sensitivity
could be achieved.Comment: 6 pages, 1 figure, RevTeX4. Final version to be published in Phys.
Rev.
A lower bound on the local extragalactic magnetic field
Assuming that the hard gamma-ray emission of Cen A is a result of synchrotron
radiation of ultra-relativistic electrons, we derive a lower bound on the local
extragalactic magnetic field, G. This result is consistent with
(and close to) upper bounds on magnetic fields derived from consideration of
cosmic microwave background distortions and Faraday rotation measurements.Comment: Includes extensive discussion of particle acceleration above 10^20 eV
in the hot spot-like region of Cen
Tests of the Equivalence Principle with Neutral Kaons
We test the Principle of Equivalence for particles and antiparticles, using
CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time,
we search for possible annual, monthly and diurnal modulations of the
observables |eta_{+-}| and phi_{+-}, that could be correlated with variations
in astrophysical potentials. Within the accuracy of CPLEAR, the measured values
of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the
gravitational potential. We analyze data assuming effective scalar, vector and
tensor interactions, and we conclude that the Principle of Equivalence between
particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9},
respectively, for scalar, vector and tensor potentials originating from the Sun
with a range much greater than the distance Earth-Sun. We also study
energy-dependent effects that might arise from vector or tensor interactions.
Finally, we compile upper limits on the gravitational coupling difference
between K0 and K0bar as a function of the scalar, vector and tensor interaction
range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl)
incorporate
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP
An experimental study of the normalized three-jet rate of b quark events with
respect to light quarks events (light= \ell \equiv u,d,s) has been performed
using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by
the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are
found to agree with theoretical predictions treating mass corrections at
next-to-leading order. Measurements of the b quark mass have also been
performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data
are found to be better described when using the running mass. The measurement
yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12
(theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise
measurement of the b mass derived from a high energy process. When compared to
other b mass determinations by experiments at lower energy scales, this value
agrees with the prediction of Quantum Chromodynamics for the energy evolution
of the running mass. The mass measurement is equivalent to a test of the
flavour independence of the strong coupling constant with an accuracy of 7
permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
- …