399 research outputs found

    Search for 2\beta\ decays of 96Ru and 104Ru by ultra-low background HPGe gamma spectrometry at LNGS: final results

    Full text link
    An experiment to search for double beta decay processes in 96Ru and 104Ru, which are accompanied by gamma rays, has been realized in the underground Gran Sasso National Laboratories of the I.N.F.N. (Italy). Ruthenium samples with masses of about (0.5-0.7) kg were measured with the help of ultra-low background high purity Ge gamma ray spectrometry. After 2162 h of data taking the samples were deeply purified to reduce the internal contamination of 40K. The last part of the data has been accumulated over 5479 h. New improved half life limits on 2\beta+/\epsilon \beta+/2\epsilon\ processes in 96Ru have been established on the level of 10^{20} yr, in particular for decays to the ground state of 96Mo: T1/2(2\nu 2\beta+) > 1.4 10^{20} yr, T1/2(2\nu \epsilon\beta+) > 8.0 10^{19} yr and T1/2(0\nu 2K) > 1.0 10^{21} yr (all limits are at 90% C.L.). The resonant neutrinoless double electron captures to the 2700.2 keV and 2712.7 keV excited states of 96Mo are restricted as: T1/2(0\nu KL) > 2.0 10^{20} yr and T1/2(0\nu 2L) > 3.6 10^{20} yr, respectively. Various two neutrino and neutrinoless 2\beta\ half lives of 96Ru have been estimated in the framework of the QRPA approach. In addition, the T1/2 limit for 0\nu 2\beta- transitions of 104Ru to the first excited state of 104Pd has been set as > 6.5 10^{20} yr.Comment: 14 pages, 5 figures, 2 tables; version accepted for publication on Phys. Rev.

    Indications for a Detonating Quark-Gluon Plasma

    Full text link
    We propose a mechanism which naturally contains the relation μB=3μS\mu_{B} = 3\mu_{S} of the hadronic gas produced in heavy-ion collisions at CERN. Our starting assumption is the existence of a sharp front separating the quark-gluon plasma phase from the hadronic phase. Energy-momentum conservation across the front leads to the following consequences for an adiabatic process a) The baryon chemical potential, μB\mu_{B}, is approximately continuous across the front. b) The temperature in the hadronic gas is higher than the phase transition temperature due to superheating. c) In the region covered by the experiments the velocity of the hadronic gas approximately equals the speed of sound in the hadronic gas.Comment: Latex file 9 pages + 6 figures available as postscript file

    Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing

    Get PDF
    We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page

    Neutrinoless Double Beta Decay in Gauge Theories

    Full text link
    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. Its observation will severely constrain the existing models and signal that the neutrinos are massive Majorana particles. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the neutrino mass, the admixture of right handed currents etc, it may occur due to the R-parity violating supersymmetric (SUSY) interactions. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about 100 MeV. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25 per cent, almost regardless of the nuclear model. In the case of heavy neutrinos the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 and the experimental limits on the life times we have extracted new stringent limits on the average neutrino mass and on the R-parity violating coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st

    Searches for neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136^{136}Xe. The sensitivities of the different proposals are reviewed.Comment: 8 pages, prepared for TAUP 201

    Double beta decay of 100Mo^{100}Mo: the deformed limit

    Full text link
    The double beta decay of 100Mo^{100}Mo to the ground state and excited states of 100Ru^{100}Ru is analysed in the context of the pseudo SU(3) scheme. The results of this deformed limit are compared with the vibrational one based on the QRPA formalism. Consistency between the deformed limit and the experimental information is found for various ββ\beta\beta transitions, although, in this approximation some energies and B(E2) intensities cannot reproduced.Comment: 16 pages, revtex, no figures. Submmitted to Phys. Rev.

    Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    Full text link
    The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy

    Nuclear matrix element for two neutrino double beta decay from 136Xe

    Full text link
    The nuclear matrix element for the two neutrino double beta decay (DBD) of 136Xe was evaluated by FSQP (Fermi Surface Quasi Particle model), where experimental GT strengths measured by the charge exchange reaction and those by the beta decay rates were used. The 2 neutrino DBD matrix element is given by the sum of products of the single beta matrix elements via low-lying (Fermi Surface) quasi-particle states in the intermediate nucleus. 136Xe is the semi-magic nucleus with the closed neutron-shell, and the beta + transitions are almost blocked. Thus the 2 neutrino DBD is much suppressed. The evaluated 2 neutrino DBD matrix element is consistent with the observed value.Comment: 7 pages 6 figure

    Transition from a quark-gluon plasma in the presence of a sharp front

    Full text link
    The effect of a sharp front separating the quark-gluon plasma phase from the hadronic phase is investigated. Energy-momentum conservation and baryon number conservation constrain the possible temperature jump across the front. If one assumes that the temperature in the hadronic phase is TT\simeq 200 MeV , as has been suggested by numerous results from relativistic ion collisions, one can determine the corresponding temperature in the quark phase with the help of continuity equations across the front. The calculations reveal that the quark phase must be in a strongly supercooled state. The stability of this solution with respect to minor modifications is investigated. In particular the effect of an admixture of hadronic matter in the quark phase (e.g. in the form of bubbles) is considered in detail. In the absence of admixture the transition proceeds via a detonation transition and is accompanied by a substantial super-cooling of the quark-gluon plasma phase. The detonation is accompanied by less supercooling if a small fraction of bubbles is allowed. By increasing the fraction of bubbles the supercooling becomes weaker and eventually the transition proceeds via a smoother deflagration wave.Comment: 10 pages, manuscript in TeX, 9 figures available as Postscript files, CERN-TH 6923/9
    corecore