189 research outputs found

    Growth and thermal stability of TiN/ZrAlN: Effect of internal interfaces

    Get PDF
    Wear resistant hard films comprised of cubic transition metal nitride (c-TMN) and metastable c-AlN with coherent interfaces have a confined operating envelope governed by the limited thermal stability of metastable phases. However, equilibrium phases (c-TMN and wurtzite(w)-AlN) forming semicoherent interfaces during film growth offer higher thermal stability. We demonstrate this concept for a model multilayer system with TiN and ZrAlN layers where the latter is a nanocomposite of ZrN- and AlN- rich domains. The interfaces between the domains are tuned by changing the AlN crystal structure by varying the multilayer architecture and growth temperature. The interface energy minimization at higher growth temperature leads to formation of semicoherent interfaces between w-AlN and c-TMN during growth of 15 nm thin layers. Ab initio calculations predict higher thermodynamic stability of semicoherent interfaces between c-TMN and w-AlN than isostructural coherent interfaces between c-TMN and c-AlN. The combination of a stable interface structure and confinement of w-AlN to nm-sized domains by its low solubility in c-TMN in a multilayer, results in films with a stable hardness of 34 GPa even after annealing at 1150 °C.Peer ReviewedPostprint (author's final draft

    Subsurface carbon: a general feature of noble metals

    Full text link
    Carbon moieties on late transition metals are regarded as poisoning agents in heterogeneous catalysis. Recent studies show the promoting catalytic role of subsurface C atoms in Pd surfaces and their existence in Ni and Pt surfaces. Here energetic and kinetic evidence obtained by accurate simulations on surface and nanoparticle models shows that such subsurface C species are a general issue to consider even in coinage noble-metal systems. Subsurface C is the most stable situation in densely packed (111) surfaces of Cu and Ag, with sinking barriers low enough to be overcome at catalytic working temperatures. Low-coordinated sites at nanoparticle edges and corners further stabilize them, even in Au, with negligible subsurface sinking barriers. The malleability of low-coordinated sites is key in the subsurface C accommodation. The incorporation of C species decreases the electron density of the surrounding metal atoms, thus affecting their chemical and catalytic activity

    Charting the Atomic C Interaction with Transition Metal Surfaces

    Full text link
    Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow

    Perturbed angular correlations for Gd in gadolinium: in-beam comparisons of relative magnetizations

    Get PDF
    Perturbed angular correlations were measured for Gd ions implanted into gadolinium foils following Coulomb excitation with 40 MeV O-16 beams. A technique for measuring the relative magnetizations of ferromagnetic gadolinium hosts under in-beam conditions is described and discussed. The combined electric-quadrupole and magnetic-dipole interaction is evaluated. The effect of nuclei implanted onto damaged or non-substitutional sites is assessed, as is the effect of misalignment between the internal hyperfine field and the external polarizing field. Thermal effects due to beam heating are discussed.Comment: 37 pages, 15 figures, accepted for publication in NIM

    Ligand migration from cluster to support: a crucial factor for catalysis by Thiolate-protected gold clusters

    Get PDF
    Thiolate protected metal clusters are valuable precursors for the design of tailored nanosized catalysts. Their performance can be tuned precisely at atomic level, e.g. by the configuration/ type of ligands or by partial/complete removal of the ligand shell through controlled pre-treatment steps. However, the interaction between the ligand shell and the oxide support, as well as ligand removal by oxidative pre-treatment, are still poorly understood. Typically, it was assumed that the thiolate ligands are simply converted into SO 2 , CO 2 and H 2 O. Herein, we report the first detailed observation of sulfur ligand migration from Au to the oxide support upon deposition and oxidative pre-treatment, employing mainly S K-edge XANES. Conse- quently, thiolate ligand migration not only produces clean Au cluster surfaces but also the surrounding oxide support is modified by sulfur-containing species, with pronounced effects on catalytic propertiesPeer ReviewedPostprint (published version

    Modelos de crecimiento y producción en España: historia, ejemplos contemporáneos y perspectivas

    Get PDF
    En el presente trabajo se presenta una revisión sobre los modelos forestales desarrollados en España durante los últimos años, tanto para la producción maderable como no maderable y, para la dinámica de los bosques (regeneración, mortalidad). Se presentan modelos tanto de rodal completo como de clases diamétricas y de árbol individual. Los modelos desarrollados hasta la fecha se han desarrollado a partir de datos procedentes de parcelas permanentes, ensayos y el Inventario Forestal Nacional. En el trabajo se muestran los diferentes submodelos desarrollados hasta la fecha, así como las plataformas informáticas que permiten utilizar dichos modelos. Se incluyen las principales perspectivas de desarrollo de la modelización forestal en España.In this paper we present a review of forest models developed in Spain in recent years for both timber and non timber production and forest dynamics (regeneration, mortality). Models developed are whole stand, size (diameter) class and individual-tree. The models developed to date have been developed using data from permanent plots, experimental sites and the National Forest Inventory. In this paper we show the different sub-models developed so far and the friendly use software. Main perspectives of forest modeling in Spain are presented.The models described in this paper were funded by different regional, national and European projects, and some of them were elaborated by the authors. This work was funded by the Spanish Government by the SELVIRED network (code AGL2008-03740) and the strategic project «Restauración y Gestión Forestal» (code PSE-310000-2009-4)

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs

    Molecular characterization of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis

    Full text link
    Background and aims: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. Methods: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. Results: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-β proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. Conclusions: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. Lay summary: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC
    corecore