631 research outputs found
Algorithmic options for joint time-frequency analysis in structural dynamics applications
The purpose of this paper is to present recent research efforts by the authors supporting the superiority of joint time-frequency analysis over the traditional Fourier transform in the study of non-stationary signals commonly encountered in the fields of earthquake engineering, and structural dynamics. In this respect, three distinct signal processing techniques appropriate for the representation of signals in the time-frequency plane are considered. Namely, the harmonic wavelet transform, the adaptive chirplet decomposition, and the empirical mode decomposition, are utilized to analyze certain seismic accelerograms, and structural response records. Numerical examples associated with the inelastic dynamic response of a seismically-excited 3-story benchmark steel-frame building are included to show how the mean-instantaneous-frequency, as derived by the aforementioned techniques, can be used as an indicator of global structural damage
Recommended from our members
Joint time-frequency representation of simulated earthquake accelerograms via the adaptive chirplet transform
Seismic accelerograms are inherently nonstationary signals since both the intensity and frequency content of seismic events evolve in time. The adaptive chirplet transform is a signal processing technique for joint time-frequency representation of nonstationary data. Analysis of a signal via the adaptive chirplet decomposition in conjunction with the Wigner-Ville distribution yields the so-called adaptive spectrogram which constitutes a valid representation of the signal in the time-frequency plane. In this paper the potential of this technique for capturing the temporal evolution of the frequency content of strong ground motions is assessed. In this regard, simulated nonstationary earthquake accelerograms compatible with an exponentially modulated and appropriately filtered Kanai-Tajimi spectrum are processed using the adaptive chirplet transform. These are samples of a random process whose evolutionary power spectrum can be represented by an analytical expression. It is suggested that the average of the ensemble of the adaptive chirplet spectrograms can be construed as an estimate of the underlying evolutionary power spectrum. The obtained numerical results show, indeed, that the estimated evolutionary power spectrum is in a good agreement with the one defined analytically. This fact points out the potential of the adaptive chirplet analysis for as a tool for capturing localized frequency content of arbitrary data- banks of real seismic accelerograms
The effects of increasing dietary levels of soy protein concentrate (SPC) on the immune responses and disease resistance (furunculosis) of vaccinated and non-vaccinated Atlantic salmon (Salmo salar L.) parr
Juvenile salmon, with an initial weight of 9g, were fed three experimental diets, formulated to replace 35 (SPC35), 58 (SPC58) and 80 (SPC80) of high quality fishmeal (FM) with soy protein concentrate (SPC) in quadruplicate tanks. Higher dietary SPC inclusion was combined with increased supplementation of methionine, lysine, threonine and phosphorus. The experiment was carried out for 177 days. On day 92 salmon in each tank were bulk weighed. Post weighing eighty salmon from each tank were redistributed in two sets of 12 tanks. Salmon from the first set of tanks were vaccinated, while the second group was injected with phosphate buffer saline (PBS). Salmon were sampled on day 92 (pre-vaccination), day 94 (2 days post vaccination [dpv]/PBS injection [dpPBSinj]) and day 154 (62 dpv/dpPBSinj) of the trial for the assessment of their immune responses, prior to the performance of salmon bulk weights for each tank. On day 154, fish from each tank were again bulk weighed and then seventeen salmon per tank were redistributed in two sets of twelve tanks and intra-peritoneally infected with Aeromonas salmonicida. At Day 154, SPC80 demonstrated lower performance (weight gain, specific growth rate and thermal growth coefficient and feed conversion ratio) compared to SPC35 salmon. Reduced classical and total complement activities for salmon fed diets with over 58% of protein from SPC, were demonstrated prior to vaccination. Reduced alternative complement activity was detected for both SPC58 and SPC80 salmon at 2 dpv and for the SPC80 group at 62 dpv. Total and classical complement activities demonstrated no differences among the dietary groups after vaccination. Numerical increases in classical complement activity were apparent upon increased dietary SPC levels. Increased phagocytic activity (% phagocytosis and phagocytic index) was exhibited for the SPC58 group compared to SPC35 salmon at 62 dpPBSinj. No differences in serum lysozyme activity, total IgM, specific antibodies, protein, glucose and HKM respiratory burst were detected among the dietary groups at any timepoint or state. Mortalities as a result of the experimental infection only occurred in PBS-injected fish. No differences in mortality levels were demonstrated among the dietary groups. SPC58 diet supported both good growth and health in juvenile Atlantic salmon while SPC80 diet did not compromise salmon’ immunity or resistance to intraperitoneally inflicted furunculosis
Recommended from our members
Synthesis of accelerograms compatible with the Chinese GB 50011-2001 design spectrum via harmonic wavelets: artificial and historic records
A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011-2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals’ response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice
Reconstruction of Hydraulic Data by Machine Learning
Numerical simulation models associated with hydraulic engineering take a wide
array of data into account to produce predictions: rainfall contribution to the
drainage basin (characterized by soil nature, infiltration capacity and
moisture), current water height in the river, topography, nature and geometry
of the river bed, etc. This data is tainted with uncertainties related to an
imperfect knowledge of the field, measurement errors on the physical parameters
calibrating the equations of physics, an approximation of the latter, etc.
These uncertainties can lead the model to overestimate or underestimate the
flow and height of the river. Moreover, complex assimilation models often
require numerous evaluations of physical solvers to evaluate these
uncertainties, limiting their use for some real-time operational applications.
In this study, we explore the possibility of building a predictor for river
height at an observation point based on drainage basin time series data. An
array of data-driven techniques is assessed for this task, including
statistical models, machine learning techniques and deep neural network
approaches. These are assessed on several metrics, offering an overview of the
possibilities related to hydraulic time-series. An important finding is that
for the same hydraulic quantity, the best predictors vary depending on whether
the data is produced using a physical model or real observations.Comment: Submitted to SimHydro 201
Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection
We report on recent accelerator testing of a prototype general antiparticle
spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches
that exploits the antideuterons produced in neutralino-neutralino
annihilations. GAPS captures these antideuterons into a target with the
subsequent formation of exotic atoms. These exotic atoms decay with the
emission of X-rays of precisely defined energy and a correlated pion signature
from nuclear annihilation. This signature uniquely characterizes the
antideuterons. Preliminary analysis of data from a prototype GAPS in an
antiproton beam at the KEK accelerator in Japan has confirmed the
multi-X-ray/pion star topology and indicated X-ray yields consistent with prior
expectations. Moreover our success in utilizing solid rather than gas targets
represents a significant simplification over our original approach and offers
potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA
Besov priors for Bayesian inverse problems
We consider the inverse problem of estimating a function from noisy,
possibly nonlinear, observations. We adopt a Bayesian approach to the problem.
This approach has a long history for inversion, dating back to 1970, and has,
over the last decade, gained importance as a practical tool. However most of
the existing theory has been developed for Gaussian prior measures. Recently
Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct
Besov prior measures, based on wavelet expansions with random coefficients, and
used these prior measures to study linear inverse problems. In this paper we
build on this development of Besov priors to include the case of nonlinear
measurements. In doing so a key technical tool, established here, is a
Fernique-like theorem for Besov measures. This theorem enables us to identify
appropriate conditions on the forward solution operator which, when matched to
properties of the prior Besov measure, imply the well-definedness and
well-posedness of the posterior measure. We then consider the application of
these results to the inverse problem of finding the diffusion coefficient of an
elliptic partial differential equation, given noisy measurements of its
solution.Comment: 18 page
Posthumanist Education
link_to_subscribed_fulltex
In vitro production of bovine embryos derived from individual donors in the Corral® dish
Background: Since the identity of the embryo is of outmost importance during commercial in vitro embryo production, bovine oocytes and embryos have to be cultured strictly per donor. Due to the rather low yield of oocytes collected after ovum pick-up (OPU) per individual cow, oocyte maturation and embryo culture take place in small groups, which is often associated with inferior embryo development. The objective of this study was to improve embryonic development in small donor groups by using the Corral (R) dish. This commercial dish is designed for human embryo production. It contains two central wells that are divided into quadrants by a semi-permeable wall. In human embryo culture, one embryo is placed per quadrant, allowing individual follow-up while embryos are exposed to a common medium. In our study, small groups of oocytes and subsequently embryos of different bovine donors were placed in the Corral (R) dish, each donor group in a separate quadrant.
Results: In two experiments, the Corral (R) dish was evaluated during in vitro maturation (IVM) and/or in vitro culture (IVC) by grouping oocytes and embryos of individual bovine donors per quadrant. At day 7, a significantly higher blastocyst rate was noted in the Corral (R) dish used during IVM and IVC than when only used during IVM (12.9% +/- 2.10 versus 22.8% +/- 2.67) (P < 0.05). However, no significant differences in blastocyst yield were observed anymore between treatment groups at day 8 post insemination.
Conclusions: In the present study, the Corral (R) dish was used for in vitro embryo production (IVP) in cattle; allowing to allocate oocytes and/or embryos per donor. As fresh embryo transfers on day 7 have higher pregnancy outcomes, the Corral (R) dish offers an added value for commercial OPU/IVP, since a higher blastocyst development at day 7 is obtained when the Corral (R) dish is used during IVM and IVC
- …