We consider the inverse problem of estimating a function u from noisy,
possibly nonlinear, observations. We adopt a Bayesian approach to the problem.
This approach has a long history for inversion, dating back to 1970, and has,
over the last decade, gained importance as a practical tool. However most of
the existing theory has been developed for Gaussian prior measures. Recently
Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct
Besov prior measures, based on wavelet expansions with random coefficients, and
used these prior measures to study linear inverse problems. In this paper we
build on this development of Besov priors to include the case of nonlinear
measurements. In doing so a key technical tool, established here, is a
Fernique-like theorem for Besov measures. This theorem enables us to identify
appropriate conditions on the forward solution operator which, when matched to
properties of the prior Besov measure, imply the well-definedness and
well-posedness of the posterior measure. We then consider the application of
these results to the inverse problem of finding the diffusion coefficient of an
elliptic partial differential equation, given noisy measurements of its
solution.Comment: 18 page