20,252 research outputs found

    Stochastic analysis of ocean wave states with and without rogue waves

    Full text link
    This work presents an analysis of ocean wave data including rogue waves. A stochastic approach based on the theory of Markov processes is applied. With this analysis we achieve a characterization of the scale dependent complexity of ocean waves by means of a Fokker-Planck equation, providing stochastic information of multi-scale processes. In particular we show evidence of Markov properties for increment processes, which means that a three point closure for the complexity of the wave structures seems to be valid. Furthermore we estimate the parameters of the Fokker-Planck equation by parameter-free data analysis. The resulting Fokker-Planck equations are verified by numerical reconstruction. This work presents a new approach where the coherent structure of rogue waves seems to be integrated into the fundamental statistics of complex wave states.Comment: 18 pages, 13 figure

    Non-LTE models for synthetic spectra of type Ia supernovae. III. An accelerated lambda iteration procedure for the mutual interaction of strong spectral lines in SN Ia models with and without energy deposition

    Full text link
    Context. Spectroscopic analyses to interpret the spectra of the brightest supernovae from the UV to the near-IR provide a powerful tool with great astrophysical potential for the determination of the physical state of the ejecta, their chemical composition, and the SNe distances even at significant redshifts. Methods. We report on improvements of computing synthetic spectra for SNIa with respect to i) an improved and sophisticated treatment of thousands of strong lines that interact intricately with the "pseudo-continuum" formed entirely by Doppler- shifted spectral lines, ii) an improved and expanded atomic database, and iii) the inclusion of energy deposition within the ejecta. Results. We show that an accelerated lambda iteration procedure we have developed for the mutual interaction of strong spectral lines appearing in the atmospheres of SNeIa solves the longstanding problem of transferring the radiative energy from the UV into the optical regime. In detail we discuss applications of the diagnostic technique by example of a standard SNIa, where the comparison of calculated and observed spectra revealed that in the early phases the consideration of the energy deposition within the spectrum-forming regions of the ejecta does not qualitatively alter the shape of the spectra. Conclusions. The results of our investigation lead to an improved understanding of how the shape of the spectrum changes radically as function of depth in the ejecta, and show how different emergent spectra are formed as a result of the particular physical properties of SNe Ia ejecta and the resulting peculiarities in the radiative transfer. This provides an important insight into the process of extracting information from observed SNIa spectra, since these spectra are a complex product of numerous unobservable SNIa spectral features which are thus analyzed in parallel to the observable spectral features.Comment: 27 pages, 19 figures. Submitted to A&A, revised versio

    A system for production of defective interfering particles in the absence of infectious influenza A virus

    No full text
    <div><p>Influenza A virus (IAV) infection poses a serious health threat and novel antiviral strategies are needed. Defective interfering particles (DIPs) can be generated in IAV infected cells due to errors of the viral polymerase and may suppress spread of wild type (wt) virus. The antiviral activity of DIPs is exerted by a DI genomic RNA segment that usually contains a large deletion and suppresses amplification of wt segments, potentially by competing for cellular and viral resources. DI-244 is a naturally occurring prototypic segment 1-derived DI RNA in which most of the PB2 open reading frame has been deleted and which is currently developed for antiviral therapy. At present, coinfection with wt virus is required for production of DI-244 particles which raises concerns regarding biosafety and may complicate interpretation of research results. Here, we show that cocultures of 293T and MDCK cell lines stably expressing codon optimized PB2 allow production of DI-244 particles solely from plasmids and in the absence of helper virus. Moreover, we demonstrate that infectivity of these particles can be quantified using MDCK-PB2 cells. Finally, we report that the DI-244 particles produced in this novel system exert potent antiviral activity against H1N1 and H3N2 IAV but not against the unrelated vesicular stomatitis virus. This is the first report of DIP production in the absence of infectious IAV and may spur efforts to develop DIPs for antiviral therapy.</p></div

    Direct measurement of molecular stiffness and damping in confined water layers

    Get PDF
    We present {\em direct} and {\em linear} measurements of the normal stiffness and damping of a confined, few molecule thick water layer. The measurements were obtained by use of a small amplitude (0.36 A˚\textrm{\AA}), off-resonance Atomic Force Microscopy (AFM) technique. We measured stiffness and damping oscillations revealing up to 7 layers separated by 2.56 ±\pm 0.20 A˚\textrm{\AA}. Relaxation times could also be calculated and were found to indicate a significant slow-down of the dynamics of the system as the confining separation was reduced. We found that the dynamics of the system is determined not only by the interfacial pressure, but more significantly by solvation effects which depend on the exact separation of tip and surface. Thus ` solidification\rq seems to not be merely a result of pressure and confinement, but depends strongly on how commensurate the confining cavity is with the molecule size. We were able to model the results by starting from the simple assumption that the relaxation time depends linearly on the film stiffness.Comment: 7 pages, 6 figures, will be submitted to PR

    Rogue wave spectra of the Sasa–Satsuma equation

    No full text
    We analyze the rogue wave spectra of the Sasa–Satsuma equation and their appearance in the spectra of chaotic wave fields produced through modulation instability. Chaotic wave fields occasionally produce high peaks that result in a wide triangular spectrum, which could be used for rogue wave detection.The authors acknowledge the support from the Volkswagen Stiftung. N. D. and N. A. acknowledge the support of the Australian Research Council (Discovery Project DP140100265). N. A. is a recipient of the Alexander von Humboldt Award (Germany). The work of JMSC is supported by the MINECO under contracts FIS2009- 09895 and TEC2012-37958-C02-02, and by C.A.M. under contract S2013/MIT-2790

    Laser-induced break-up of water jet waveguide

    Get PDF
    In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser (λ=532nm). The jet diameter was 48”m and jet velocities from 100 to 200m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jet

    A novel IEF peptide fractionation method reveals a detailed profile of N-terminal Acetylation in chemotherapy-responsive and -resistant ovarian cancer cells

    Get PDF
    Although acetylation is regarded as a common protein modification, a detailed proteome wide profile of this posttranslational modification may reveal important biological insight regarding differential acetylation of individual proteins. Here we optimised a novel peptide IEF fractionation method for use prior to LC-MS/MS analysis in order to obtain a more in depth coverage of N-terminally acetylated proteins from complex samples. Application of the method to the analysis of the serous ovarian cancer cell line OVCAR-5 identified 341 N-terminally acetylated proteins, 23 of which are previously un-reported. The protein peptidyl-prolyl cis-trans isomerase A (PPIA) was detected in both the N-terminally acetylated and un-modified forms, and was further analysed by data independent acquisition in Carboplatin responsive parental OVCAR-5 cells and Carboplatin resistant OVCAR-5 cells. This revealed a higher ratio of un-acetylated to acetylated N-terminal PPIA in the parental compared to the Carboplatin resistant OVCAR-5 cells, and a 4.1-fold increase in PPIA abundance overall in the parental cells relative to Carboplatin-resistant OVCAR-5 cells (P = 0.015). In summary, the novel IEF peptide fractionation method presented here is robust, reproducible, and can be applied to the profiling of N-terminally acetylated proteins. All mass spectrometry data is available as a ProteomeXchange repository (PXD003547).Florian Weiland, Georgia Arentz, Manuela Klingler-Hoffmann, Peter McCarthy, Noor A. Lokman, Gurjeet Kaur, Martin K. Oehler, and Peter Hoffman

    Trilingual conversations: a window into multicompetence

    Get PDF
    A recurrent theme in the literature on trilingual language use is the question of whether there is a specific “trilingual competence.” In this paper we consider this question in the light of codeswitching patterns in two dyadic trilingual conversations between a mother and daughter conducted in (Lebanese) Arabic, French, and English. Quantitative and qualitative analysis of codeswitching in both conversants shows that, despite the fact that both subjects are fluent in all three languages, uses of switching are significantly different for mother and daughter across a number of features, including relative frequency of different switch types, and the incidence of hybrid constructions involving items from two or more languages. The subjects appear to display qualitatively distinct profiles of competence in the trilingual mode. This in turn leads to the conclusion that the facts of trilingual language use are best characterized in terms of “multicompetence” (Cook, 1991). The paper concludes with some further reflections on the uniqueness of trilingual language use (an “old chestnut” in trilingualism research, cf. Klein, 1995)

    Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage

    Get PDF
    Gravity waves (GWs) transport momentum and energy in the atmosphere, exerting a profound influence on the global circulation. Accurately measuring them is thus vital both for understanding the atmosphere and for developing the next generation of weather forecasting and climate prediction models. However, it has proven very difficult to measure the full set of GW parameters from satellite measurements, which are the only suitable observations with global coverage. This is particularly critical at latitudes close to 60° S, where climate models significantly under-represent wave momentum fluxes. Here, we present a novel fully 3-D method for detecting and characterising GWs in the stratosphere. This method is based around a 3-D Stockwell transform, and can be applied retrospectively to existing observed data. This is the first scientific use of this spectral analysis technique. We apply our method to high-resolution 3-D atmospheric temperature data from AIRS/Aqua over the altitude range 20–60 km. Our method allows us to determine a wide range of parameters for each wave detected. These include amplitude, propagation direction, horizontal/vertical wavelength, height/direction-resolved momentum fluxes (MFs), and phase and group velocity vectors. The latter three have not previously been measured from an individual satellite instrument. We demonstrate this method over the region around the Southern Andes and Antarctic Peninsula, the largest known sources of GW MFs near the 60° S belt. Our analyses reveal the presence of strongly intermittent highly directionally focused GWs with very high momentum fluxes (∌ 80–100 mPa or more at 30 km altitude). These waves are closely associated with the mountains rather than the open ocean of the Drake Passage. Measured fluxes are directed orthogonal to both mountain ranges, consistent with an orographic source mechanism, and are largest in winter. Further, our measurements of wave group velocity vectors show clear observational evidence that these waves are strongly focused into the polar night wind jet, and thus may contribute significantly to the "missing momentum" at these latitudes. These results demonstrate the capabilities of our new method, which provides a powerful tool for delivering the observations required for the next generation of weather and climate models
    • 

    corecore