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Abstract  

Although acetylation is regarded as a common protein modification, a detailed proteome 

wide profile of this posttranslational modification may reveal important biological insight 

regarding differential acetylation of individual proteins. Here we optimised a novel peptide 

IEF fractionation method for use prior to LC-MS/MS analysis in order to obtain a more in 

depth coverage of N-terminally acetylated proteins from complex samples. Application of the 

method to the analysis of the serous ovarian cancer cell line OVCAR-5 identified 344 N-

terminally acetylated proteins, 12 of which are previously un-reported. The protein peptidyl-

prolyl cis-trans isomerase A (PPIA) was detected in both the N-terminally acetylated and un-

modified forms, and was further analysed by data independent acquisition in Carboplatin 

responsive parental OVCAR-5 cells and Carboplatin resistant OVCAR-5 cells. This revealed 

a higher ratio of un-acetylated to acetylated N-terminal PPIA in the parental compared to the 

Carboplatin resistant OVCAR-5 cells, and a 4.1-fold increase in PPIA abundance overall in  

the parental cells relative to Carboplatin-resistant OVCAR-5 cells (P = 0.015). In summary, 

the novel IEF peptide fractionation method presented here is robust, reproducible, and can be 

applied to the profiling of N-terminally acetylated proteins. All mass spectrometry data is 

available as a ProteomeXchange repository (PXD003547). 

 

KEYWORDS: N-terminal Acetylation, Ovarian cancer, carboplatin resistance, 

chemoresistance, peptidyl-prolyl cis-trans isomerase A, PPIA 
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Introduction 

Ovarian cancer is the seventh most common cancer and the eighth leading cause of cancer-

related deaths among women, responsible for approximately 250, 000 new cases and 150,000 

deaths each year worldwide 1. Due to delayed presentation and diagnosis, over 70% of 

women with ovarian cancer are diagnosed with stage III/IV disease. The standard treatment 

for stage III/IV diagnoses involves debulking surgery followed by combination chemotherapy 

with the drugs carboplatin and paclitaxel. Despite an 80% initial response rate, the majority 

of women exhibit disease relapse  and die from recurrent Carboplatin-resistant disease 2. It is 

therefore of  great importance to investigate mechanisms and markers that predict ovarian 

cancer resistance to standard chemotherapy regimens, in order to save patients from 

damaging, ineffective treatments, and determine if alternative regimens and novel drug 

combinations would be more beneficial.  

 

The chromosome centric human proteome project (C-HPP) aims for the characterisation of 

the ~20,300 proteins expressed by the protein-coding genome with respect to gene location 

on each chromosome, cellular distribution, and quantification 3, 4, 5. Moreover, the C-HPP 

also plans to map the major classes of post-translational modifications (PTM) for all of the 

identified proteins in disease related contexts 6. N(alpha)-terminal acetylation is one of the 

most common covalent protein modifications to occur in eukaryotes, with ~80% of soluble 

human proteins predicted to be N-terminally acetylated 7. N-terminal acetylation is an 

irreversible process that typically occurs during protein synthesis and involves the transfer of 

an acetyl group from acetyl coenzyme A to the α-amino group of a protein’s first amino acid, 

as catalysed by N-terminal acetyltransferases (NATs) 8. The functional changes induced by 

N-terminal acetylation can be highly variable but can be broadly categorized  into subcellular 

localization, protein interactions and complex formation, protein folding, and perhaps the 
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most well-known, protein degradation with regard to the N-end rule 9, 10, 11. The N-end rule 

pathway targets proteins for ubiquitin-mediated degradation based on their N-terminal 

residue and the PTM status of this residue. These degradation signals are known as N-

degrons.   

 

Initially N-terminal acetylation was shown to block ATP-dependent ubiquitin-mediated 

degradation 12, however it has also been shown to promote sequence specific protein 

degradation  13. In eukaryotes there are two N-end rule pathways that form part of the 

ubiquitin system that target the majority of cellular proteins for degradation; the Ac/N-end 

and the Arg/N-end rule pathways. In the Ac/N-end rule pathway, proteins containing N-

terminally acetylated residues are targeted for degradation. Conversely, the Arg/N-end rule 

pathway targets specific un-acetylated N-terminal residues (Arg, Phe, Lys, Leu, His, Tyr, 

Trp, and Ile) and N-terminal Asn and Gln which have been deaminated and then Arginylated 

14. Un-acetylated N-terminal Met followed by a hydrophobic residue are also targeted for 

degradation by the Arg/N-end rule pathway 15. Protein N-terminal acetylation is thought to be 

relevant to cancer development with NATs acting as tumour suppressors in healthy tissues 

and oncoproteins in cancerous cells 16. 

 

The aims of this study were to characterise the N-terminal acetylation profile of the ovarian 

cancer cell line OVCAR-5 in order to identify novel acetylation sites and help determine if 

the occurrence of N-terminal acetylation differs in chemoresistant cells and therefore can be 

used as putative markers for chemotherapeutic resistance in ovarian cancer. In order to 

comprehensively profile the N-terminal acetylation sites and develop spectral libraries, a 

novel IEF Sephadex flatbed gel method for peptide fractionation of up to 10 mg was 

developed and applied prior to nano-LC-ESI-MS/MS. The novel method was first applied to 
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trypsin digested mouse brain lysates to show the technique is capable of separating and 

improving the coverage of highly complex peptide mixtures. Following this the method was 

then applied to OVCAR-5 cell lysates, enabling the detection of 344 N-terminally acetylated 

proteins, 12 of which are previously un-reported. This stands in contrast to the 189 N-

terminal acetylation sites detected in the unfractionated OVCAR-5 sample.  

 

To determine if variable N-terminal acetylation may play a role in the development of 

chemoresistance, the results from the IEF fractionation were searched for N-terminally 

acetylated proteins present in both the modified and un-modified forms that could be 

analysed further in non-resistant (parental) and carboplatin resistant (CBPR) OVCAR-5 cells.  

The protein peptidyl-prolyl cis-trans isomerase A (PPIA), also known as Cyclophilin A, was 

identified and selected for further analysis given the protein’s potential involvement in 

chemoresistance 17 and given the protein was detected in both the N-terminally acetylated and 

un-acetylated forms. PPIA was quantified using data independent acquisition methods in the 

parental and CBPR OVCAR-5 cells. This revealed a higher ratio of un-acetylated to 

acetylated N-terminal PPIA in the parental compared to the CBPR cells, and a 4.1-fold 

increase in PPIA abundance overall in the parental cells relative to CBPR OVCAR-5 cells (P 

= 0.015). 
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Materials and Methods  

Preparation of tryptic peptides from mouse brain samples 

Freshly dissected P30 mouse brain was lysed at room temperature under denaturing 

conditions in 10mL of lysis buffer (8 M urea (Merck, Darmstadt, Germany), 20 mM HEPES 

(ICN Biochemicals, Ohio, USA), pH 8, complete protease inhibitors (Roche, Basel, 

Switzerland), 10mM NaF (Sigma-Aldrich, St. Louis, USA), 1mM Na3VO4 (Sigma-Aldrich), 

1 mM beta-glycerophosphate (Sigma-Aldrich), 2.5 mM sodium pyrophosphate (Sigma-

Aldrich)) with 6 titrations through an 18G needle (Becton Dickinson, Franklin Lakes, USA), 

followed by 6 titrations through a 21G needle (Becton Dickinson), followed by 3 x 15 second 

pulses with a 300W sonicator (Branson, Danbury, USA) at 50% amplitude. Lysates were 

centrifuged at 20,000 x g for 15 minutes at 20°C to remove insoluble material and protein 

concentrations were estimated using an EZQ protein assay (Life Technologies, Carlsbad, 

USA). The samples were reduced with 5 mM DTT (Roche) for 45 min at room temperature 

and alkylated with 10 mM iodoacetamide (IAA) (GE Healthcare, Little Chalfont, UK)) for 30 

minutes at room temperature in the dark. Lysates were then diluted to 2 M urea with 20 mM 

HEPES, pH 8, and digested overnight at 25°C with trypsin-TPCK (Worthington 

Biochemicals, Lakewood, USA) at an enzyme to substrate ratio of 1:50. Following digestion, 

samples were acidified with formic acid (FA) (Sigma-Aldrich) and subsequently desalted 

using 500 mg C18 Sep-Pak SPE cartridges (Waters, Milford, USA). C18 cartridges were 

conditioned with 5 mL of 100% Acetonitrile (ACN) (Merck), followed by 5 mL of 50% (v/v) 

ACN, 0.1% FA, and finally 20 mL of 0.1% trifluoroacetic acid (TFA) (Sigma-Aldrich). 

Sample was loaded onto the conditioned C18 cartridge, washed with 15 mL of 0.1% TFA, 

and eluted with 6 mL of 50% ACN, 0.1% FA. Desalted samples were dried to completeness 

overnight in an Alpha 1-2 freeze drier (Martin Christ, Osterode am Harz, Germany). The 
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peptides were then resuspended in 10% ACN to a concentration of 10mg/mL as estimated by 

the initial protein amount before digestion. 

 

Peptide fractionation by IEF Sephadex gel flatbed electrophoresis  

335 mg of Sephadex G-100 SF (GE Healthcare) was mixed with 3 mL 10% (v/v) Acetonitrile 

(ACN) (Merck) and rehydrated for 72 hours at room temperature. Subsequently, the required 

volume of mouse brain tryptic digest for 1 mg or 10 mg peptides (0.1 mL or 1 mL, 

respectively), 180 µL Pharmalyte 3-10 (GE Healthcare) and 50 µL pI-marker mixture (14) 

were added. Thereafter, 10% (v/v) ACN (Merck) was added to a total volume of 4.5 mL and 

mixed carefully, to not introduce air-bubbles, with a 5 mL pipette (Eppendorf, Hamburg, 

Germany). The mixture was pipetted into a lane (Dimensions: (10 x 1) cm2) in a HD-PE tray, 

a layer of six Whatman 3MM Chr paper (GE Healthcare) was wetted in the respective 

cathode (100 mM NaOH (Merck)) or anode solution (100 mM H2SO4 (Merck)) and applied 

to the ends of the lane. The mixture was then distributed homogenously in the lane by short, 

rapid movements of the HD-PE tray. IEF was conducted using a Multiphor II apparatus (GE 

Healthcare) at 4 °C, with the voltage limited to 1500 V and current limited to 0.1 mA/ cm2 

lane area until 1,000 Vhrs (1mg peptides) or 1,300 Vhrs (10 mg peptides) were reached. 

Following separation, 20 fractions were collected into 1.5 mL 0.22 µm cellulose acetate spin-

filter-tubes (Corning, New York, USA) using a spatula. Sephadex fractions were eluted with 

3 x 200 µL 10% (v/v) ACN using a bench-top centrifuge. Elution of peptides was deemed 

complete at this point as no pI-marker was left visible in the Sephadex gel. In the case of the 

1 mg of fractionated mouse brain peptides, the eluate was concentrated using a vacuum 

centrifuge until approximately 100 µL solution was left and diluted 1:10 in 2% (v/v) ACN, 

0.1% (v/v) formic acid in 97.9% water (FA2). For the 10 mg of the fractionated mouse brain 
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peptides, the vacuum concentration step was omitted and the eluate was directly diluted 1:10 

in FA2. 

 

OVCAR-5 sample preparation and IEF fractionation 

For fractionation by IEF the OVCAR-5 cells were lysed using a Precellys 24 bead beater. 

Briefly, the cells were placed in Precellys bead beating tubes (Bertin Technologies, 

Montigny-le-Bretonneux, France) in 1% (w/v) SDS (GE Healthcare) and homogenised using 

a Precellys 24 (Bertin Technologies) at 6,300 revolutions per minute for 3 x 1 minute cycles. 

The samples were centrifuged at 20,000 x g for 30 minutes, the supernatant was recovered 

and DNA was subsequently sheared using a Bioruptor (Diagenode, Seraing, Belgium) set to 

“high” output for 6 x 30 second cycles with one minute breaks between each cycle. 

Sonication was carried out in ice-cold water. Protein concentration was quantified using an 

EZQ protein assay (Life Technologies). Protein extracts were digested with a modified FASP 

method as previously described by Wisniewski e.t al.(2009) 18. Briefly, samples were made 

up to a volume of 200 µL with 7M urea (Merck), 100mM ammonium bicarbonate (U-

AmBic) (Merck) and reduced by adding a final volume of DTT to 50 mM (Roche) followed 

with incubation at 20°C for 1 hour. Vivacon ultrafiltration spin columns (Sartorius Vivacon 

500, 10,000 MWCO HY) were pre-rinsed at 14,000 x g for 10 minutes with 100 µL U-

AmBic to remove traces of glycerine. Samples were loaded into the spin columns and 

centrifuged at 14,000 x g for 10 minutes. 100 µL of 55 mM IAA (GE Healthcare) in U-

AmBic was added to the spin columns and incubated in the dark for 20 minutes at 20°C. 

Samples were centrifuged at 14,000 x g for 10 minutes and washed with 100 µL of U-AmBic 

twice, followed by one wash with 100 µL of 50 mM U-AmBic. Samples were digested 

overnight at 37°C with trypsin gold (Promega, Madison, WI, USA) at an enzyme to substrate 

ratio of 1:50 in 100 µL of 5 mM U-AmBic. 1 mg tryptic peptides from the OVCAR-5 cells 
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was desalted, dried to completeness, re-suspended in 100 µl 10% (v/v) ACN (Merck), and 

IEF was carried out as described above until 1,000 Vh were reached. Once separated the 

sample was collected into 20 fractions and prepared for nano-LC-ESI-MS/MS as described 

above.  

 

Generation of carboplatin resistant OVCAR-5 cells 

The human serous ovarian cancer cell line, OVCAR-5 was obtained from Dr. Thomas 

Hamilton (Fox Chase Cancer Centre, Philadelphia, PA) and cultured under conditions as 

previously described 19. OVCAR-5 carboplatin resistant cells were derived from the parental 

OVCAR-5 cells by continuous exposure to carboplatin (Hospira Australia Pty Ltd). OVCAR-

5 cells were cultured in T-75 flasks and treated with 25µM of carboplatin for 24 hours 

followed by a recovery phase (cells in normal growth media) for 72 hours. The 25µM dose of 

carboplatin was chosen because the inhibitory concentration (IC50) carboplatin results in the 

OVCAR-5 cell senescence and delayed cell growth. The OVCAR-5 cells exposure to 

carboplatin and recovery phase cycle was repeated for 8 cycles and development period was 

performed within 8-10 weeks. Cell survival was calculated using a MTT assay, as per the 

manufacturer’s instructions (Sigma-Aldrich), as previously described 19. The (IC50) of 

carboplatin was calculated from three independent experiments performed in triplicate using 

exponential regression curve fitting. We observed a 2.3 fold increase in IC50 of the OVCAR-5 

CBPR cells (IC50 = 232 µM) compared to the parental OVCAR-5 cells (IC50 = 98 µM). For 

data independent acquisition mass spectrometry 300 ng the parental OVCAR-5 and OVCAR-

5 CBPR cell lysate was analysed. These cells were prepared as described in the previous 

section, without the use of the IEF fraction step. 
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Nano -LC-ESI-MS/MS    

Nano-LC-ESI-MS/MS was performed using an Ultimate 3000 RSLC system (Thermo-Fisher 

Scientific, Waltham, USA) coupled to an Impact HD™ QTOF mass spectrometer (Bruker 

Daltonics, Bremen, Germany) via an Advance CaptiveSpray source (Bruker Daltonics). 

Approximately 1 µg from each of the 20 mouse brain and OVCAR-5 fractions, and 1 µg 

from the un-fractionated mouse brain and OVCAR-5 digests were analysed. Peptide samples 

were pre-concentrated onto a C18 trapping column (Acclaim PepMap100 C18 75 µm × 20 

mm, Thermo-Fisher Scientific) at a flow rate of 5 µL/ min in 2% (v/v) ACN 0.1% (v/v) TFA 

for 10 minutes. For all IEF fractionated samples peptide separation was performed using a 75 

µm ID C18 column (Acclaim PepMap100 C18 75 µm × 50 cm, Thermo-Fisher Scientific) at 

a flow rate of 0.2 µL/ minutes using a linear gradient from 5 to 45% B (A: 5% (v/v) ACN 

0.1% (v/v) FA, B: 80% (v/v) ACN 0.1% (v/v) FA) over 130 minutes, followed by a 20 

minute wash with 90% B, and a 20 minute equilibration with 5% A. MS scans were acquired 

in the mass range of 300 to 2,200 m/z in a data-dependent fashion using Bruker’s Shotgun 

Instant Expertise™ method. This method uses IDAS (intensity dependent acquisition speed) 

to adapt the speed of acquisition depending on the intensity of precursor ions (fixed cycle 

time), and RT2 (RealTime Re-Think) to exclude previously selected precursor ions from 

undergoing re-fragmentation unless the chromatographic peak intensity of the ion has 

increased by a factor of 5. Singly charged precursor ions were excluded from acquisition. 

Collision energy ranged from 23% to 65% as determined by the m/z of the precursor ion. 

 

Nano-LC-ESI-MS/MS data analysis  

All spectra collected using data dependent acquisition (DDA) were analysed using the 

MaxQuant software (version 1.5.2.8) with the Andromeda search engine 20 against the 

UniProt human database (downloaded on the 13th of October 2015, containing 20,204 entries) 
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for the OVCAR-5 cell line and against the UniProt mouse database (downloaded on the 13th 

of October 2015, containing 16,785 entries) for the mouse brain lysates. For the OVCAR-5 

data, all novel N-terminal acetylation and methionine cleavage site identifications were also 

checked against the UniProt human database containing all isoforms to ensure matching was 

genuine and not caused by protein isoforms. The standard Bruker QTOF settings in 

MaxQuant were used with a mass error tolerance of 40 ppm. The variable modifications of 

oxidation of methionine and N-terminal acetylation and the fixed modification of 

carbamidomethyl of cysteines were specified, with the digestion enzyme specified as trypsin. 

The protein false discovery rate (FDR) and peptide spectrum match FDRs were both set to 

1% using a target decoy approach, with a minimum peptide length of 7 amino acids 20. Only 

unique and razor peptides were used when reporting protein identifications. For the status of 

N-acetylation, the neXtProt 21 (02-2016) and PRIDE databases were consulted. 

 

Further data analysis was carried out using R (Version 3.0.1, The R Foundation for Statistical 

Computing) 22 and additionally the ggplot2 v1.01 23 package. The mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 24 

partner repository with the dataset identifier PXD003547. 

 

Quantification of PPIA by DIA  

Nano-LC was performed as described above on 300 ng of the CBPR and un-treated parental 

OVCAR-5 cells using an Ultimate 3000 RSLC system coupled to an Impact HD™ QTOF 

mass spectrometer set to acquire data using Bruker’s Middle Band CID™ method. This data 

independent acquisition (DIA) method scans a mass range of m/z 375 to 1,206 in 26 Da 

increments and CID is performed with increasing collision energies of 20 to 36. The acquired 

data was analysed using Skyline (Version 3.1.0.7382) 25 against a spectral library generated 
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from the results of the OVCAR-5 IEF fractionation experiment. Analysis of PPIA abundance 

in the parental compared to CBPR OVCAR-5 cells (n=2) was carried out using the following 

spectral library peptides for quantification; V[+42]NPTVFFDIAVDGEPLGR (2+), 

VNPTVFFDIAVDGEPLGR (2+), VSFELFADK (+3), SIYGEKFEDENFILK (3+), 

FEDENFILK (+2), KITIADC[+57]GQLE (+2), and ITIADC[+57]GQLE (+2). The Skyline 

peptide and transition settings were as follows: trypsin was specified as the cleavage enzyme 

with a maximum of 1 missed cleavage, precursor charge states 2 and 3, ion charges 1 and 2, 

ion types y and b from ion 2 to ion 6, an ion match tolerance 0.1 m/z, a MS/MS filtering DIA 

isolation scheme from m/z 375 to 1,206 (26 Da windows), retention time window of 5 

minutes, and a resolution of 10,000.  For analysis of the un-modified vs acetylated N-terminal 

peptide of PPIA in the parental compared to CBPR OVCAR-5 cells (n=3), the % of the un-

acetylated VNPTVFFDIAVDGEPLGR relative to the acetylated 

V[+42]NPTVFFDIAVDGEPLGR peptide was calculated. To calculate the relative 

abundance of PPIA overall, the area intensities of the detected peptides was summed.  For all 

results the standard error of the mean and P values using un-paired t-tests were calculated 

using GraphPad Prism 6 v008.  
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Results 

Validation of IEF Sephadex gel flatbed electrophoresis method using mouse brain 

Fractionation of the mouse brain sample prior to nano-LC-ESI-MS/MS analysis significantly 

increased the total number of peptide and protein identifications obtained. The number of 

unique protein identifications with an FDR of 1% increased from 1,984 in the unfractionated 

sample (1 µg of digest analysed) to 3,716 and 3,546 in the 1 mg and 10 mg IEF fractionated 

mouse brain samples, respectively (both 1 µg of digest analysed per fraction). The peptide 

fractionation was deemed satisfactory, as 70% of the peptides were detected in 2 fractions or 

less from a total of 20 fractions (Figure 1A). Increasing the peptide load from 1 mg to 10 mg 

did not alter the quality of peptide separation, as in the case of the 10 mg load, 75% of 

peptides were identified in 2 fractions or less (Figure 1B). A median of 4 additional peptides 

were identified per protein in the 1 mg of fractionated sample as compared with the 

unfractionated sample, with additional peptides identified for 86% of the proteins overall 

(Figure 1C). For the 10 mg IEF fractionated sample the median increase in the number of 

peptides identified per protein was 3, with additional peptides identified for 78% of proteins 

(Figure 1D). The mean additional sequence coverage obtained by the IEF fractionation was 

15% for the 1 mg sample and 10% for the 10 mg sample (Figure 1E, F). 

 

N-terminal acetylation analysis of the IEF fractionated ovarian cancer cell line OVCAR-5 

Following validation of the peptide IEF fractionation, the method was applied to the ovarian 

cancer cell line OVCAR-5. In total 4,305 unique proteins were identified from the OVCAR-5 

cells (protein FDR of 1%) of which 2,067 were exclusively detected in the 1 mg IEF 

fractionated sample (Supporting Table 1a), as compared to 2,282 proteins detected  in the 1 

µg of unfractionated sample (44 exclusively identified) (Supporting Table 1b). Between the 

IEF fractionated and un-fractionated analyses there was an overlap of 2,238 proteins 
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identified in both experiments. The total number of unique peptides identified in the IEF 

fractionated sample was 17,773 (peptide FDR of 1%) as compared to 7094 identifications in 

the unfractionated OVCAR-5 cells (peptide FDR of 1%).  Additional peptides (median: 2) 

were identified for 90% of proteins and a mean additional protein sequence coverage of 9.1% 

was gained in the IEF fractionated sample as compared to the un-fractionated sample 

(Supporting Figure 1). The chromosomal locations of the corresponding genes for all of the 

identified proteins (IEF fractionated and unfractionated) are provided in Supporting Figure 2. 

All of the detected proteins had an evidence level of PE1 except for androglobin (Q8NX0), 

which had an evidence level of PE2. However, only one peptide from this protein was 

identified and hence it does not meet the strcit HPP criteria for the detection of low evidence 

level proteins, where a minimum of 2 unique peptides with a length of ≥9 amino acids is 

required.  

 

The total number of identified N-termini peptides was 446 (acetylated and un-acetylated, 

Supporting Table 2a and 2b), of which 401 were detected in the IEF fractionation OVCAR-5 

samples, and 215 were detected in the unfractionated OVCAR-5 sample. The overall number 

of identified N-terminal acetylation sites was 382 (85.6% of all N-termini detected), with an 

overlap between the IEF and un-fractionated samples of 170. In the IEF fractionated 

OVCAR-5 sample a total of 344 N-terminal acetylation sites were detected, 12 of which are 

previously un-reported in both the neXtProt and PRIDE databases. Annotated spectra 

exported from MaxQuant for these peptides are provided in Supporting Figure 3. This stands 

in contrast to 189 N-terminal acetylation sites identified in the unfractionated OVCAR-5 

sample, 4 of which were novel, however 3 of these were also identified in the fractionated 

sample. The data was further analysed for initiator methionine cleavage. Forty-four proteins 

were detected to have undergone initiator methionine cleavage, none of which have been 
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previously reported. The acetylation status, initiator methionine presence or cleavage, and 

sample information for the detected novel N-terminal peptides is summarised in Table 1. 

 

Of the detected N-terminally acetylated amino acid residues 51.6% were Ala, 23.3% were 

Met, 18.8% were Ser, 4.2% were Thr, 0.8% were Val, 0.5% were Cys, with Asp, Glu, and 

Gly each contributing 0.3%. Details for the detected N-terminally acetylated amino acid 

residues, un-modified N-terminal amino acid residues, and the following amino acid residues 

for all detected N-terminal peptides are provided in Supporting Table 3.  

 

The N-terminus of 7 proteins from the IEF fractioned sample were detected with the initiator 

methionine present and also in the initiator methionine cleaved form (proteins Q96HQ2, 

Q14974, P62937, P56385, P49189, P46782, P31939). Only one of these proteins was 

detected in both forms in the unfractionated OVCAR-5 sample. However, both N-terminal 

forms (with and without initiator methionine) could be detected for 6 of the 7 proteins in 300 

ng of the unfractionated OVCAR-5 sample when analysed by DIA using a spectral library 

generated from the IEF fractionated sample (Supporting Figure 4).   

 

Quantification of PPIA in parental and CBPR OVCAR-5 cells 

The IEF fractionated OVCAR-5 results were searched for N-terminally acetylated proteins 

present in both the modified and un-modified forms, which highlighted the protein peptidyl-

prolyl cis-trans isomerase A (PPIA), also known as Cyclophilin A. In order to determine if 

the N-terminal acetylation of PPIA is altered in chemoresistant cells, CBPR and parental 

OVCAR-5 cells were analysed by DIA nano-LC-ESI-MS/MS. The level of N-terminal 

acetylation between the acetylated and un-modified N-terminal peptide of PPIA 

(VNPTVFFDIAVDGEPLGR) was analysed in the parental and CBPR OVCAR-5 cells (n=3) 
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revealing 24.4% ±3.3% un-acetylated to acetylated peptide in the parental OVCAR-5 cells 

compared to 9.4% ±4.2% in the CBPR OVCAR-5 cells, P=0.025 (Figure 2.A). This indicates 

a higher proportion un-acetylated N-terminal peptide in the parental cells as compared to the 

CBPR cells. Overall quantification of PPIA found the protein to be significantly increased in 

the parental OVCAR-5 cells as compared to the CBPR OVCAR-5 cells (n=2) 4.1 fold, P = 

0.015 (Figure 2.C).  
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Discussion 

In-line with the C-HPP, one aim of this study was to map novel N-terminal acetylation sites 

from proteins extracted from the ovarian cancer cell line OVCAR-5.  In order to 

comprehensively characterise the human proteome, sample fractionation and analysis 

methods that allow for the detection of previously uncharacterised proteins and modifications 

are required. Isoelectric focusing of proteins using Sephadex as a matrix has been previously 

described by Radola et al. 26 and Görg et al. 27: the protocol described here has been adjusted 

to enable the separation of peptides while being directly compatible with downstream 

analysis by nano-LC-ESI-MS/MS and allowed for the detection of 12 previously un-reported 

N-terminal protein acetylation sites. 

 

Several protein and peptide pre-fractionation methods are available and are routinely used 

prior to MS analysis, most utilising strong cation exchange, strong anion exchange or some 

form of IEF. These methods have been shown to work with peptide amounts of up to one 

milligram 28, however the best resolution was achieved when peptide loads in the high 

microgram range were used 29, 30. The variant of isoelectric focusing presented here allows for 

separation of peptide amounts of up to at least 10 mg while retaining the resolving power 

observed at lower loads. The high loading capacity of the technique is ideal for samples 

available in large quantities that also exhibit a high dynamic range of protein abundance, as it 

increases the chances of detecting very low abundance peptides, in particular peptides 

exhibiting PTMs. Further advantages of the method are that it is cost-effective, flexible in the 

number of fractions sampled, the separation distance is freely adjustable and the user has the 

ability to parallelize fractionations (e.g. our custom made HD-PE tray allows for 

simultaneous fractionation of up to 7 samples). Additionally, the method is easy to implement 

and requires only an electrophoretic chamber with cooling plate. The time required for the 
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fractionation is relatively short and can usually be finished within 6 hours, inclusive set-up 

and sampling time (excluding 72 h passive rehydration time required for the Sephadex gel). 

Therefore, this method is an interesting candidate for laboratories that want to establish their 

own, more comprehensive spectral libraries for data-independent mass spectrometry 

experiments (e.g. SWATH or middle-band CID), without the acquisition of additional, highly 

specialized and expensive equipment. 

 

Overall a total of 4,305 unique proteins were identified in the IEF fractionated OVCAR-5 

sample as compared to 2,282 proteins in the unfractionated sample (protein FDR of 1%). 

From these results 379 proteins were detected as being N-terminally acetylated and 63 

proteins were detected as being un-modified at the N-terminus.  An interesting study by 

Lange et al. 31 profiled the N-terminal acetylation status of the naturally degraded proteome 

of human erythrocyte cells using the TAILS method 32. The majority of the N-termini 

detected in the study mapped to positions within the protein sequence, revealing proteolytic 

processing in 64% of cases with a large amount of N-terminal acetylation. Lange et al. then 

analysed the frequency of the specific N-terminally acetylated amino acids observed and 

were able to define a stabilising N-end rule for N-termini generated by post translational 

proteolytic cleavage. The results showed Leu, Ile, and Phe to have the highest levels of 

acetylation, followed by Ala and Val, with little Ser and Thr N-terminal acetylation. These 

findings are in contrast to the data presented in this study, which found high levels of Ala, 

Met, and Ser N-terminal acetylation, a low level of Thr and Val  N-terminal acetylation, and 

no Leu, Ile, and Phe N-terminal acetylation. The differences observed could be a reflection of 

N-terminal processing of original or intact protein N-termini as compared to Lange et al. 

which investigated new N-termini produced as a result of proteolytic cleavage. 
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The 379 proteins detected as being N-terminally acetylated in the IEF fractionated and 

unfractionated OVCAR-5 cells were mined for N-terminally acetylated proteins present in 

both the modified and un-modified forms. Such proteins were of interest for analysis in 

responsive parental and carboplatin resistant (CBPR) OVCAR-5 cells with the aim of 

determining whether variable N-terminal acetylation may be involved in, or altered during, 

the development of chemoresistance. The protein peptidyl-prolyl cis-trans isomerase A 

(PPIA), also known as Cyclophilin A or Cyclosporin A-binding protein, was detected using 

these parameters and selected for further analysis given the protein’s potential involvement in 

chemoresistance 17. When compared to the total amount of detected PPIA N-terminus, the 

relative abundance of the un-modified to acetylated form was 24.4% ±3.3% in the un-treated 

parental cells and 9.4% ±2.7% in the CBPR cells (P=0.025). This result suggests a trend 

towards more un-acetylated PPIA N-terminus in the cells that had not been treated with 

Carboplatin.  Given the first amino acid of the PPIA N-terminus is Val (after cleavage of the 

initiator Met) using the Ac/N-end rule pathway, the presence of more un-acetylated N-

terminus would suggest less degradation. Upon further investigation the overall relative 

abundance of PPIA was found to be significantly increased in the parental OVCAR-5 cells 

compared to the treated carboplatin resistant cells 4.1 fold, P=0.015. 

 

PPIA is a peptidyl-prolyl cis-trans isomerase (PPIase), a family of proteins with molecular 

chaperone functions that also catalyse a rate-limiting protein folding process. PPIA falls 

directly under the transcriptional control of p53 and HIF1 alpha and has been implicated in a 

number of cancers with expression levels correlating to malignant transformation 33, 34. 

Expression of PPIA is essential for the conformational maintenance of oncogenes, signaling 

proteins involved in cell proliferation, anti-apoptotic functions, transcription factors, and cell 

motility regulatory proteins 17. The immunosuppressant drug cyclosporine A is known to 
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inhibit PPIA, a drug that has the capacity to sensitise Cisplatin and Carboplatin resistant 

ovarian tumours 35. Given PPIA can protect cells against oxidative-stress induced apoptosis 

36, 37 it has been hypothesised that cyclosporine A may act to reduce chemoresistance partially 

via the inhibition of PPIA. A study analysing gene expression prior to and following 

chemotherapy in ovarian tumour tissues found PPIA expression to be increased 2 fold 

following treatment, however the result was not significant 38. A study analysing 

chemoresistance to the drug 3-bis (2-chloroethyl)-1-nitrosourea in malignant rat glioma cells 

found PPIA to be decreased in the drug resistant compared with responsive cells at the 

protein level 39, confounding the results observed here. Interestingly a study analysing 

paclitaxel chemoresistance in the ovarian cancer cell line SKOV3 found another PPIase, 

FKBP5, to be transiently up-regulated 100 fold at the mRNA level whilst chemoresistance 

was being established in the cells 40. Long term expression of FKBP5 however, was 

decreased in the resistant cells compared to the responsive cells.   

 

Conclusion 

Further validation of the overall expression and variable N-terminal acetylation of PPIA in 

responsive versus chemoresistant ovarian cancer cell lines is required to determine if PPIA is 

involved in, or altered by, Carboplatin treatment. Ideally the expression and N-terminal 

acetylation status of PPIA would be analysed in patient samples prior to and following 

chemotherapy. Such an analysis is hampered only by the difficulty in collecting tissue 

samples following treatment, as patients rarely receive further surgery at this point.  In 

summary the novel IEF peptide fractionation method presented here is a robust, reproducible, 

and a cost effective way of increasing the sequence coverage of protein digests and post-

translationally modified peptides analysed by nano-LC-ESI-MS/MS. Although we did not 

conduct a direct comparison of our method to targeted N-terminomic methods like 
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COFRADIC 41 or TAILS 32, the data presented implies that our method is capable to cover N-

terminally modified peptides in at least a complementary fashion, as indicated by their entries 

into the neXtProt database Therefore our method is of particular use when establishing 

spectral libraries for DIA analysis. 
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Figures 

 

 

 
Figure 1. Verification of the IEF Sephadex gel flatbed electrophoresis method for peptides 
using mouse brain. The number of fractions a specific peptide was identified in (1mg mouse 
brain IEF (A) and 10 mg mouse brain IEF(B)). The number of additional peptides identified 
per protein in the 1 mg of mouse brain IEF fractionated sample as compared to the 
unfractionated sample. The median number of additionally identified peptides was 4. D) The 
number of additional peptides identified per protein in the 10 mg of mouse brain IEF 
fractionated sample as compared to the unfractionated sample. The median number of 
additionally identified peptides was 3. E) The additional protein sequence coverage in the 1 
mg of mouse brain IEF fractionated sample as compared to the unfractionated sample, a 
mean increase of 14.86%. F) The additional protein sequence coverage in the 10 mg of 
mouse brain IEF fractionated sample as compared to the unfractionated sample, a mean 
increase of 10.02%. 
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Figure 2. Relative abundance of PPIA in un-treated parental OVCAR-5 cells compared to 
CBPR OVCAR-5 cells as quantified by DIA nano-LC-MS/MS. A) The percentage of Un-
Acetylated to Acetylated VNPTVFFDIAVDGEPLGR in the parental (24.4% ±3.3%) and 
CBPR (9.4% ±2.7%) OVCAR-5 cells (n=3), P=0.025. B) Peptide spectra of 
VNPTVFFDIAVDGEPLGR and V[+42]NPTVFFDIAVDGEPLGR used as library 
references for the relative quantification analysis performed in the software Skyline. C) 
Relative abundance of PPIA in the parental (9.1x107 ±1.2 x107) and CBPR (2.2x107 ±3.6 
x106) OVCAR-5 cells (n=2) as quantified from the peptides VSFELFADK (+3), 
SIYGEKFEDENFILK (3+), FEDENFILK (+2), KITIADC[+57]GQLE (+2), and 
ITIADC[+57]GQLE (+2). PPIA was increased in the parental cells 4.1 fold as compared to 
the CBPR cells, P=0.015. D) Spectra for the reference library peptides used for the relative 
quantification of PPIA.  
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Table 1. Novel N-terminal peptides grouped via N-acetylation and initiator Methionine cleavage.  

 

Count
a
N-acetylation

b
Initiator M cleavage

c
Initiator Methionine neXtProt

d
Novel N-terminus

f
Novel N-Acetylation

g
Count

h
Novel N-terminus

i
Novel N-Acetylation

j

5 at Position 1 - - - x 3 - x

26 at Position 2 x - x x 9 x x

1 at Position 2 x x - x 0 - x

4 - x - x - 0 x -

12 - x - x - 1 x -

48 - - - 44 32 13 10 12

47 - - - 44 31 13 10 12

42 - - - 40 27 12 10 11

6 - - - 4 5 1 0 1

1 - - - 0 1 0 0 0

5 - - - 4 4 1 0 1
a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p Total number of N-terminal peptides identified in IEF fractionated and unfractionated OVCAR-5 cell line

N-terminus has not been described neither in neXtProt nor in PRIDE

N-acetylation has not been described neither in neXtProt nor in PRIDE

Number of identified peptides not described in neither neXtProt nor PRIDE

Total number of N-terminal peptides identified exclusively in IEF fractionated OVCAR-5 cell line

Total number of N-terminal peptides identified in unfractionated OVCAR-5 cell line

Total number of N-terminal peptides identified exclusively in IEF fractionated OVCAR-5 cell line

N-acetylation has not been described in the literature before according to neXtProt

Total number of N-terminal peptides identified

Total number of N-terminal peptides identified in IEF fractionated OVCAR-5 cell line

Initiator methionine removed (x) or alternation according to neXtProt

Position of N-acetylation according to neXtProt

N-terminus has not been described in the literature before according to neXtProt

Number of identified peptides not described in neXtProt

Position of N-acetylation of identified peptide

Cleavage of initiator methionine of identified peptide detected

Unfractionated total
n -

Unfractionated exclusive
o -

Overlap
p -

Total
k -

IEF total
l -

IEF exclusive
m -

3 -

4 at Position 1

5 -

Group N-acetylation neXtProt
e

1 -

2 -
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Supporting Information  

Table S-1a. OVCAR-5 IEF fractionated nano-LC-ESI-MS/MS protein identification results. 

Table S-1b. OVCAR-5 nano-LC-ESI-MS/MS protein identification results (unfractionated). 

Table S-2a. N-terminal site identification results from the IEF fractionated and 

unfractionated OVCAR-5 cells.  

Table S-2b. Novel N-terminal site identification results from the IEF fractionated and 

unfractionated OVCAR-5 cells 

Table S-3. Number, percentage, and type of the detected acetylated and un-modified N-

terminal amino acid residues.  Number, percentage, and type of the amino acid following the 

N-terminal amino acid residue. 

 

Figure S-1. OVCAR-5 IEF peptide fractionation results. 

Figure S-2. The chromosomal locations of the corresponding genes for all of the OVCAR-5 

identified proteins.  

Figure S-3. Annotated spectra for all peptides identified with novel N-terminal acetylation or 

methionine cleavage sites.   

Figure S-4. Detection of N-terminal peptides with and without initiator methionine in the 

unfractionated OVCAR-5 cells by DIA. 
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