22,439 research outputs found

    Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions

    Full text link
    The fundamental dislocation processes of glide, climb, and annihilation are studied on diffusive time scales within the framework of a continuum field theory, the Phase Field Crystals (PFC) model. Glide and climb are examined for single edge dislocations subjected to shear and compressive strain, respectively, in a two dimensional hexagonal lattice. It is shown that the natural features of these processes are reproduced without any explicit consideration of elasticity theory or ad hoc construction of microscopic Peierls potentials. Particular attention is paid to the Peierls barrier for dislocation glide/climb and the ensuing dynamic behavior as functions of strain rate, temperature, and dislocation density. It is shown that the dynamics are accurately described by simple viscous motion equations for an overdamped point mass, where the dislocation mobility is the only adjustable parameter. The critical distance for the annihilation of two edge dislocations as a function of separation angle is also presented.Comment: 13 pages with 17 figures, submitted to Physical Review

    Dynamics and Steady States in excitable mobile agent systems

    Full text link
    We study the spreading of excitations in 2D systems of mobile agents where the excitation is transmitted when a quiescent agent keeps contact with an excited one during a non-vanishing time. We show that the steady states strongly depend on the spatial agent dynamics. Moreover, the coupling between exposition time (ω\omega) and agent-agent contact rate (CR) becomes crucial to understand the excitation dynamics, which exhibits three regimes with CR: no excitation for low CR, an excited regime in which the number of quiescent agents (S) is inversely proportional to CR, and for high CR, a novel third regime, model dependent, here S scales with an exponent ξ1\xi -1, with ξ\xi being the scaling exponent of ω\omega with CR

    Characterization of serine proteinase expression in agaricus bisporus and coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 Promoter

    Get PDF
    The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiatio

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate βij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the aλa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively

    Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region

    Full text link
    Nuclear matter within the liquid-gas phase transition region is investigated in a mean-field two-component Fermi-gas model. Following largely analytic considerations, it is shown that: (1) Due to density dependence of asymmetry energy, some of the neutron excess from the high-density phase could be expelled into the low-density region. (2) Formation of clusters in the gas phase tends to counteract this trend, making the gas phase more liquid-like and reducing the asymmetry in the gas phase. Flow of asymmetry between the spectator and midrapidity region in reactions is discussed and a possible inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe

    Generalized MICZ-Kepler Problems and Unitary Highest Weight Modules

    Get PDF
    For each integer n1n\ge 1, we demonstrate that a (2n+1)(2n+1)-dimensional generalized MICZ-Kepler problem has an \mr{Spin}(2, 2n+2) dynamical symmetry which extends the manifest \mr{Spin}(2n+1) symmetry. The Hilbert space of bound states is shown to form a unitary highest weight \mr{Spin}(2, 2n+2)-module which occurs at the first reduction point in the Enright-Howe-Wallach classification diagram for the unitary highest weight modules. As a byproduct, we get a simple geometric realization for such a unitary highest weight \mr{Spin}(2, 2n+2)-module.Comment: 27 pages, Refs. update

    Cluster Analysis of Thermal Icequakes Using the Seismometer to Investigate Ice and Ocean Structure (SIIOS): Implications for Ocean World Seismology

    Get PDF
    Ocean Worlds are of high interest to the planetary community due to the potential habitability of their subsurface oceans. Over the next few decades several missions will be sent to ocean worlds including the Europa Clipper, Dragonfly, and possibly a Europa lander. The Dragonfly and Europa lander missions will carry seismic payloads tasked with detecting and locating seismic sources. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) is a NASA PSTAR funded project that investigates ocean world seismology using terrestrial analogs. The goals of the SIIOS experiment include quantitatively comparing flight-candidate seismometers to traditional instruments, comparing single-station approaches to a small-aperture array, and characterizing the local seismic environment of our field sites. Here we present an analysis of detected local events at our field sites at Gulkana Glacier in Alaska and in Northwest Greenland approximately 80 km North of Qaanaaq, Greenland. Both field sites passively recorded data for about two weeks. We deployed our experiment on Gulkana Glacier in September 2017 and in Greenland in June 2018. At Gulkana there was a nearby USGS weather station which recorded wind data. Temperature data was collected using the MERRA satellite. In Greenland we deployed our own weather station to collect temperature and wind data. Gulkana represents a noisier and more active environment. Temperatures fluctuated around 0C, allowing for surface runoff to occur during the day. The glacier had several moulins, and during deployment we heard several rockfalls from nearby mountains. In addition to the local environment, Gulkana is located close to an active plate boundary (relative to Greenland). This meant that there were more regional events recorded over two weeks, than in Greenland. Greenlands local environment was also quieter, and less active. Temperatures remained below freezing. The Greenland ice was much thicker than Gulkana (~850 m versus ~100 m) and our stations were above a subglacial lake. Both conditions can reduce event detections from basal motion. Lastly, we encased our Greenland array in an aluminum vault and buried it beneath the surface unlike our array in Gulkana where the instruments were at the surface and covered with plastic bins. The vault further insulated the array from thermal and atmospheric events
    corecore