22,439 research outputs found
Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions
The fundamental dislocation processes of glide, climb, and annihilation are
studied on diffusive time scales within the framework of a continuum field
theory, the Phase Field Crystals (PFC) model. Glide and climb are examined for
single edge dislocations subjected to shear and compressive strain,
respectively, in a two dimensional hexagonal lattice. It is shown that the
natural features of these processes are reproduced without any explicit
consideration of elasticity theory or ad hoc construction of microscopic
Peierls potentials. Particular attention is paid to the Peierls barrier for
dislocation glide/climb and the ensuing dynamic behavior as functions of strain
rate, temperature, and dislocation density. It is shown that the dynamics are
accurately described by simple viscous motion equations for an overdamped point
mass, where the dislocation mobility is the only adjustable parameter. The
critical distance for the annihilation of two edge dislocations as a function
of separation angle is also presented.Comment: 13 pages with 17 figures, submitted to Physical Review
Dynamics and Steady States in excitable mobile agent systems
We study the spreading of excitations in 2D systems of mobile agents where
the excitation is transmitted when a quiescent agent keeps contact with an
excited one during a non-vanishing time. We show that the steady states
strongly depend on the spatial agent dynamics. Moreover, the coupling between
exposition time () and agent-agent contact rate (CR) becomes crucial to
understand the excitation dynamics, which exhibits three regimes with CR: no
excitation for low CR, an excited regime in which the number of quiescent
agents (S) is inversely proportional to CR, and for high CR, a novel third
regime, model dependent, here S scales with an exponent , with
being the scaling exponent of with CR
Characterization of serine proteinase expression in agaricus bisporus and coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 Promoter
The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiatio
Slow epidemic extinction in populations with heterogeneous infection rates
We explore how heterogeneity in the intensity of interactions between people
affects epidemic spreading. For that, we study the
susceptible-infected-susceptible model on a complex network, where a link
connecting individuals and is endowed with an infection rate
proportional to the intensity of their contact
, with a distribution taken from face-to-face experiments
analyzed in Cattuto (PLoS ONE 5, e11596, 2010). We find an extremely
slow decay of the fraction of infected individuals, for a wide range of the
control parameter . Using a distribution of width we identify two
large regions in the space with anomalous behaviors, which are
reminiscent of rare region effects (Griffiths phases) found in models with
quenched disorder. We show that the slow approach to extinction is caused by
isolated small groups of highly interacting individuals, which keep epidemic
alive for very long times. A mean-field approximation and a percolation
approach capture with very good accuracy the absorbing-active transition line
for weak (small ) and strong (large ) disorder, respectively
Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region
Nuclear matter within the liquid-gas phase transition region is investigated
in a mean-field two-component Fermi-gas model. Following largely analytic
considerations, it is shown that: (1) Due to density dependence of asymmetry
energy, some of the neutron excess from the high-density phase could be
expelled into the low-density region. (2) Formation of clusters in the gas
phase tends to counteract this trend, making the gas phase more liquid-like and
reducing the asymmetry in the gas phase. Flow of asymmetry between the
spectator and midrapidity region in reactions is discussed and a possible
inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe
Recommended from our members
The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss.
Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats. Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TA). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the contour, with a beetle bank acting as a vegetative barrier partway up the slope, and one had a mixed direction cultivation treatment, with cultivation and drilling conducted up and down the slope and all subsequent operations conducted on the contour. In the second year, this mixed treatment was replaced with contour cultivation. Results showed no significant reduction in runoff, sediment losses or total phosphorus losses from minimum tillage when compared to the conventional plough treatment, but there were increased losses of total dissolved phosphorus with minimum tillage. The mixed direction cultivation treatment increased surface runoff and losses of sediment and phosphorus. Increasing surface roughness with contour cultivation reduced surface runoff compared to up and down slope cultivation in both the plough and minimum tillage treatment areas, but this trend was not significant. Sediment and phosphorus losses in the contour cultivation treatment followed a very similar pattern to runoff. Combining contour cultivation with a vegetative barrier in the form of a beetle bank to reduce slope length resulted in a non-significant reduction in surface runoff, sediment and total phosphorus when compared to up and down-slope cultivation, but there was a clear trend towards reduced losses. However, the addition of a beetle bank did not provide a significant reduction in runoff, sediment losses or total phosphorus losses when compared to contour cultivation, suggesting only a marginal additional benefit. The economic implications for farmers of the different treatment options are investigated in order to assess their suitability for implementation at a field scale
Generalized MICZ-Kepler Problems and Unitary Highest Weight Modules
For each integer , we demonstrate that a -dimensional
generalized MICZ-Kepler problem has an \mr{Spin}(2, 2n+2) dynamical symmetry
which extends the manifest \mr{Spin}(2n+1) symmetry. The Hilbert space of
bound states is shown to form a unitary highest weight \mr{Spin}(2,
2n+2)-module which occurs at the first reduction point in the
Enright-Howe-Wallach classification diagram for the unitary highest weight
modules. As a byproduct, we get a simple geometric realization for such a
unitary highest weight \mr{Spin}(2, 2n+2)-module.Comment: 27 pages, Refs. update
Evolutionary history of the ADRB2 gene in humans
No abstract available
Cluster Analysis of Thermal Icequakes Using the Seismometer to Investigate Ice and Ocean Structure (SIIOS): Implications for Ocean World Seismology
Ocean Worlds are of high interest to the planetary community due to the potential habitability of their subsurface oceans. Over the next few decades several missions will be sent to ocean worlds including the Europa Clipper, Dragonfly, and possibly a Europa lander. The Dragonfly and Europa lander missions will carry seismic payloads tasked with detecting and locating seismic sources. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) is a NASA PSTAR funded project that investigates ocean world seismology using terrestrial analogs. The goals of the SIIOS experiment include quantitatively comparing flight-candidate seismometers to traditional instruments, comparing single-station approaches to a small-aperture array, and characterizing the local seismic environment of our field sites. Here we present an analysis of detected local events at our field sites at Gulkana Glacier in Alaska and in Northwest Greenland approximately 80 km North of Qaanaaq, Greenland. Both field sites passively recorded data for about two weeks. We deployed our experiment on Gulkana Glacier in September 2017 and in Greenland in June 2018. At Gulkana there was a nearby USGS weather station which recorded wind data. Temperature data was collected using the MERRA satellite. In Greenland we deployed our own weather station to collect temperature and wind data. Gulkana represents a noisier and more active environment. Temperatures fluctuated around 0C, allowing for surface runoff to occur during the day. The glacier had several moulins, and during deployment we heard several rockfalls from nearby mountains. In addition to the local environment, Gulkana is located close to an active plate boundary (relative to Greenland). This meant that there were more regional events recorded over two weeks, than in Greenland. Greenlands local environment was also quieter, and less active. Temperatures remained below freezing. The Greenland ice was much thicker than Gulkana (~850 m versus ~100 m) and our stations were above a subglacial lake. Both conditions can reduce event detections from basal motion. Lastly, we encased our Greenland array in an aluminum vault and buried it beneath the surface unlike our array in Gulkana where the instruments were at the surface and covered with plastic bins. The vault further insulated the array from thermal and atmospheric events
- …