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For each integer n ≥ 1, we demonstrate that a (2n + 1)-dimensional generalized
MICZ-Kepler problem has a Spin(2, 2n + 2) dynamical symmetry which extends the
manifest Spin(2n + 1) symmetry. The Hilbert space of bound states is shown to form
a unitary highest weight Spin(2, 2n + 2)-module with the minimal positive Gelfand–
Kirillov dimension. As a byproduct, we obtain a simple geometric realization for
such a unitary highest weight Spin(2, 2n + 2)-module. C© 2011 American Institute of
Physics. [doi:10.1063/1.3574886]

I. INTRODUCTION

The Kepler problem is a physics problem in dimension three about two bodies which attract
each other by a force proportional to the inverse square of their distance. As is well known, its exact
solution in classical mechanics gives a very satisfactory explanation of the Kepler’s laws of planetary
motion, and its exact solution in quantum mechanics gives an equally satisfactory explanation of
the spectral lines for the hydrogen atom. The MICZ-Kepler problems, discovered in the late 1960s
by McIntosh and Cisneros1 and independently by Zwanziger,2 are natural cousins of the Kepler
problem. Roughly speaking, a MICZ-Kepler problem is the Kepler problem for which the nucleus
of a hypothetic hydrogen atom also carries a magnetic charge.

In the early 1990s, Iwai3 obtained non-Abelian analogs of the MICZ-Kepler problems in
dimension five; more recently, the first author constructed and solved4 analogs of the MICZ-Kepler
problems in all dimensions bigger than or equal to three which extends the aforementioned work of
McIntosh and Cisneros, Zwanziger, and Iwai. We shall refer to the MICZ-Kepler problems and their
higher dimensional analogs as the generalized MICZ-Kepler problems.

Recall that the MICZ-Kepler problems all have a large dynamical symmetry group—
Spin(2, 4)—as shown by Barut and Bornzin.5 These authors also used the symmetry to provide
an elegant solution for the problems in Ref. 5. Similar results were also established in dimension
five by Pletyukhov and Tolkachev6 for the generalized MICZ-Kepler problems of Iwai. The purpose
of the present paper is to investigate the dynamical symmetry and explore its representation theory
for the generalized MICZ-Kepler problems in all odd dimensions.

We shall show that for each positive integer n, a (2n + 1)-dimensional generalized MICZ-Kepler
problem always has a Spin(2, 2n + 2)7 dynamical symmetry, i.e., its Hilbert space of bound states.8

In fact, we shall show that the Hilbert space of bound states forms a unitary highest weight module
for Spin(2, 2n + 2); more precisely, we shall establish the following result:9

Theorem 1: Assume n ≥ 1 is an integer and μ is an half integer. Let H (μ) be the Hilbert
space of bound states for the (2n + 1)-dimensional generalized MICZ-Kepler problem with magnetic
charge μ, and lμ := l + |μ| + n − 1 for any integer l ≥ 0.
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(1) There is a natural unitary action of Spin(2, 2n + 2) on H (μ) which extends the manifest
unitary action of Spin(2n + 1). In fact, H (μ) is the unitary highest weight module of Spin(2, 2n + 2)
with highest weight (−(n + |μ|), |μ|, · · · , |μ|, μ).

(2) As a representation of subgroup Spin(2, 1) ×Z2 Spin(2n + 1),

H (μ) =
⊕̂∞

l=0

(
D−

2lμ+2 ⊗ Dl

)
, (1)

where Dl is the irreducible module of Spin(2n + 1) with highest weight (l + |μ|, |μ|, · · · , |μ|)
and D−

2lμ+2 is the anti-holomorphic discrete series representation of Spin(2, 1) with highest weight
−lμ − 1.

(3) As a representation of the maximal compact subgroup Spin(2) ×Z2 Spin(2n + 2),

H (μ) =
⊕̂∞

l=0

(
D(−lμ − 1) ⊗ Dl

)
, (2)

where Dl is the irreducible module of Spin(2n + 2) with highest weight (l + |μ|, |μ|, · · · , |μ|, μ)
and D(−lμ − 1) is the irreducible module of Spin(2) with weight −lμ − 1.

Readers who wish to have a quick geometric description of the aforementioned unitary highest
weight module of Spin(2, 2n + 2) may consult the Appendix. Readers who wish to know more
details about the classification10–12 of unitary highest weight modules may start with a fairly readable
account from Ref. 12. Note that there is no general classification result for the family of unitary
modules of real noncompact simple Lie groups, and the subfamily of unitary highest weight modules
is special enough so that such a nice classification result can possibly exist.

In Sec. II, we give a quick review of the generalized MICZ-Kepler problems in odd dimensions.
For the computational purpose in the subsequent section, we quickly review the gauge potential13

for the background gauge field (i.e., connection) under a particular local gauge (i.e., bundle trivi-
alization), and then quote from Ref. 4 some key identities satisfied by the gauge potential. In Sec.
III, we introduce the dynamical symmetry operators and show that they satisfy the commutation
relations for the generators14 of so0(2, 2n + 2). We also show that these dynamical symmetry op-
erators satisfy a set of quadratic relations.15 In Sec. IV, we start with a preliminary discussion of
the representation problem and point out the need of “twisting.” Then we give a review of the
(bound) energy eigenspaces (i.e., eigenspaces of the harmiltonian viewed as a hermitian operator
on the physical Hilbert space) and finally introduce the notion of “twisted” energy eigenspaces. The
“twisted” Hilbert space of bound states, defined as the Hilbert space completion of the direct sum
of “twisted” energy eigenspaces, turns out to be the space of L2-sections of a canonical hermitian
bundle. In Sec. V, we solve the representation problem by proving two propositions from which
Theorem 1 follows quickly. In the Appendix, each of the unitary highest weight representations
of Spin(2, 2n + 2) encountered here is geometrically realized as the space of all L2-sections of
a canonical hermitian bundle. Via communications with Professors R. Howe and N. Wallach, we
learned that these representations can be imbedded into the kernel of certain canonical differential
operators, see Refs. 16 and 17 for the case μ = 0 and Ref. 18 for the general case. Professor Feher
informed us of Ref. 19 in which a related interesting model with a conjectured dynamical O(2, 4)
symmetry is investigated.

Via private communication with Professor Vogan, the unitary highest weight Reps appeared in
the above theorem are precisely those with the minimal positive Gelfand–Kirillov dimension. In other
words, a unitary highest weight Reps of Spin(2, 2n + 2) has the minimal positive Gelfand–Kirillov
dimension if and only if it can be realized as the Hilbert space of bound states of a generalized
MICZ-Kepler problem in dimension 2n + 1. This phenomenon has been vastly extended.20

The main concern of this paper is to further investigate the generalized MICZ-Kepler problems
constructed in Ref. 4. As a byproduct of this investigation, we obtain both the L2-model of all unitary
highest weight modules of Spin(2, 2n + 1) with minimal positive Gelfand–Kirillov dimension and
their branching laws with respect to certain subgroups. It turns out that these representation theoretical
results have been obtained earlier in much more general setting by Kobayashi and Ørsted in a series
of papers17 especially when the magnetic charge μ is zero (see also Ref. 21 for a more general
branching laws). For nonzero magnetic charge μ, our L2-model seems to be new. Finally we would
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like to remark that we have a second model for the unitary highest weight modules concerned here,
i.e., the Hilbert space of bound states for the generalized MICZ-Kepler problem; and these two
different models are related via the twisting map in Eq. (42).

II. REVIEW OF GENERALIZED MICZ-KEPLER PROBLEMS

From the physics point of view, a MICZ-Kepler problem is a generalization of the Kepler problem
by adding a suitable background magnetic field, while at the same time making an appropriate
adjustment to the scalar Coulomb potential so that the problem is still integrable. The configuration
space is the punctured 3D Euclidean space, and the background magnetic field is a Dirac monopole.
To be more precise, the (dimensionless) hamiltonian of a MICZ-Kepler problem with magnetic
charge μ is

H = −1

2
�A + μ2

2r2
− 1

r
. (3)

Here �A is the Laplace operator twisted by the gauge potential A of a Dirac monopole under a
particular gauge, and μ is the magnetic charge of the Dirac monopole, which must be a half integer.

To extend the MICZ-Kepler problems beyond dimension three, one needs a suitable generaliza-
tion of the Dirac monopoles. Fortunately this problem was solved in Refs. 4, 22, and 23. We review
the work here.

A. Generalized MICZ-Kepler problems

Let D ≥ 3 be an integer, RD
∗ be the punctured D-space, i.e., RD with the origin removed. Let

ds2 be the cylindrical metric on RD
∗ . Then (RD

∗ , ds2) is the product of the straight line R with
the round sphere SD−1. Since we are interested in the odd dimensional generalized MICZ-Kepler
problems only in this paper, we assume D is odd.

Let S± be the positive/negative spinor bundle of (RD
∗ , ds2), then S± correspond to the funda-

mental spin representations s± of so0(D − 1) [the Lie algebra of SO(D − 1)]. Note that each of the
above spinor bundles is endowed with a natural SO(D) invariant connection—the Levi–Civita spin
connection of (RD

∗ , ds2). As a result, the Young product of I copies of these bundles, denoted by
S I

+, S I
− respectively, is also equipped with natural SO(D) invariant connections.

When μ is a positive half integer, we write S2μ
+ as S2μ and S2μ

− as S−2μ. We also adopt this
convention for μ = 0: to denote by S0 the product complex line bundle with the product connection.
Note that S2μ with μ being a half integer is our analog of the Dirac monopole with magnetic charge
μ, and the corresponding representation of so0(D − 1) will be denoted by s2μ.

Definition 1: Let n ≥ 1 be an integer, μ a half integer. The (2n + 1)-dimensional generalized
MICZ-Kepler problem with magnetic charge μ is defined to be the quantum mechanical system on
R2n+1

∗ for which the wave-functions are sections of S2μ, and the hamiltonian is

H = −1

2
�μ + (n − 1)|μ| + μ2

2r2
− 1

r
, (4)

where �μ is the Laplace operator twisted by S2μ.

Upon choosing a local gauge, the background gauge field (i.e., the natural connection on
S2μ) can be represented by a gauge potential Aα in an explicit form; then �μ can be represented
explicitly by

∑
α(∂α + iAα)2. Since the gauge potential is of crucial importance, we review some of

its properties in Subsection II B.

B. Basic identities for the gauge potential

We write �r = (x1, x2, . . . , xD−1, xD) for a point in RD and r for the length of �r . The small Greek
letters μ, ν, etc. run from 1 to D and the lower case Latin letters a, b etc. run from 1 to D − 1. We
use the Einstein convention that repeated indices are always summed over.
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Under a suitable choice of local gauge on RD with the negative Dth axis removed, the gauge
field can be represented by the following gauge potential:

AD = 0, Ab = − 1

r (r + xD)
xaγab, (5)

where γab = i
4 [γa, γb] with γa being the “gamma matrix” for physicists. Note that γa = iea with

ea being the element in the Clifford algebra that corresponds to the ath standard coordinate vector
of RD−1.

The field strength of Aα is then given by

FDb = 1

r3
xaγab,

Fab = − 2γab

r (r + xD)
+ 1

r2(r + xD)2
·(

(2 + xD

r
)xc(xaγcb − xbγca) + i xd xc[γda, γcb]

)
. (6)

Here are some identities from Ref. 4 that our later computations will crucially depend on:

Lemma 1: Let Aα be the gauge potential defined by Eq. (5) and let Fαβ be its field strength.
(1) The following identities are valid in any representation of so0(D − 1):

Fμν Fμν = 2

r4
c2, [∇κ , Fμν] = 1

r2

(
xμFνκ + xν Fκμ − 2xκ Fμν

)
,

xμAμ = 0, xμFμν = 0, [∇μ, Fμν] = 0,

r2[Fμν, Fαβ] + i Fμβδαν − i Fνβδαμ + i Fαμδβν − i Fανδβμ

= i

r2

(
xμxα Fβν + xμxβ Fνα − xνxα Fβμ − xνxβ Fμα

)
, (7)

where ∇α = ∂α + iAα , and c2 = c2[so0(D − 1)] = 1
2γabγab is the (quadratic) Casimir operator of

so0(D − 1).
(2) When D = 2n + 1, μ is a half integer, the following identity

r2 Fλα Fλβ = c2

n

(
1

r2
δαβ − xαxβ

r4

)
+ i(n − 1)Fαβ (8)

holds in the irreducible representation s2μ of so0(2n) with highest weight (|μ|, · · · , |μ|, μ).

Note that c2
n = μ2 + (n − 1)|μ| in the irreducible representation s2μ. We remark that Ar =

Aθ = 0, where Ar and Aθ are the r and θ components of A in the polar coordinate system
(r, θ, θ1, · · · , θD−3, φ) for RD

∗ with θ being the angle between �r and the positive Dth axis.

III. THE DYNAMICAL SYMMETRY

For the remainder of this paper, we only consider a fixed (2n + 1)-dimensional generalized
MICZ-Kepler problem with magnetic charge μ. Recall that the configuration space is RD

∗ where
D = 2n + 1. For our computational purposes, it suffices to work on RD with the negative D-axis
removed. We introduce the notations πα := −i∇α , c := μ2 + (n − 1)|μ|. Then [πα, πβ ] = −i Fαβ .

Following Barut and Bornzin,5 we let{ �� := r �π, X := rπ2 + c
r , Y := r,

Jαβ := i[�α, �β ], �Z := i[��, X ], �W := i[��, Y ] = �r ;
(9)
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and ⎧⎨⎩�D+1 := 1
2 (X − Y ) , �−1 := 1

2 (X + Y ) ,

�A := 1
2

(
�Z − �W

)
, �M := 1

2

(
�Z + �W

)
, T := i[�D+1, �−1].

(10)

Some relatively straightforward but lengthy computations yield⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jαβ = xαπβ − xβπα + r2 Fαβ,

Aα = 1
2 xαπ2 − πα(�r · �π ) + r2 Fαβπβ − c

2r2 xα + i
2 (D − 3)πα − 1

2 xα,

Mα = 1
2 xαπ2 − πα(�r · �π ) + r2 Fαβπβ − c

2r2 xα + i
2 (D − 3)πα + 1

2 xα,

T = �r · �π − i D−1
2 ,

�α = rπα,

�−1 = 1
2

(
rπ2 + r + c

r

)
,

�D+1 = 1
2

(
rπ2 − r + c

r

)
.

(11)

Let the capital Latin letters A, B run from −1 to D + 1. Introduce JAB as follows:

JAB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jμν if A = μ, B = ν

Aμ if A = μ, B = D + 1
Mμ if A = μ, B = −1
�μ if A = μ, B = 0
T if A = D + 1, B = −1
�D+1 if A = D + 1, B = 0
�−1 if A = −1, B = 0
−JB A if A > B
0 if A = B.

(12)

Theorem 2: Let C∞(S2μ) be the space of smooth sections of S2μ. Let JAB be defined by (12).
(1) As operators on C∞(S2μ), JAB’s satisfy the following commutation relations:

[JAB, JA′ B ′ ] = −iηAA′ JB B ′ − iηB B ′ JAA′ + iηAB ′ JB A′ + iηB A′ JAB ′ , (13)

where the indefinite metric tensor η is diag{+ + − · · · −} relative to the following order: −1, 0, 1,
..., 2n + 2 for the indices.

(2) As operators on C∞(S2μ),

{JAB, J A
C} := JAB J A

C + J A
C JAB = −2aηBC , (14)

where a = n − c.
The proof of this theorem is purely algebraic and computational, but quite long. It will be carried

out in Subsections III A and III B.

A. Proof of part (1)

By exploiting the symmetry properties of both sides of Eq. (13), we can see that it suffices
to verify the commutation relations in the cases where (A, B) 	= (A′, B ′), A < B, A′ < B ′, and
B ′ ≤ B. The proof crucially depends on Lemma 1.

The following lemma is quite useful.

Lemma 2: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
[Jαβ, r ] = [Jαβ, 1

r ] = 0,

[Jαβ, xν] = −i(xαδβν − xβδαν),

[Jαβ, πν] = −i(παδβν − πβδαν),

[Jαβ, Fα′β ′ ] = iδαα′ Fββ ′ + iδββ ′ Fαα′ − iδαβ ′ Fβα′ − iδβα′ Fαβ ′ .

(15)
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Proof:

[Jαβ, r ] = [xαπβ − xβπα + r2 Fαβ, r ] = [xαπβ − xβπα, r ]

= −i(xα

xβ

r
− xβ

xα

r
) = 0.

[Jαβ,
1

r
] = [xαπβ − xβπα + r2 Fαβ,

1

r
] = [xαπβ − xβπα,

1

r
]

= +i(xα

xβ

r3
− xβ

xα

r3
) = 0.

[Jαβ, xν] = [xαπβ − xβπα + r2 Fαβ, xν] = [xαπβ − xβπα, xν]

= −i(xαδβν − xβδαν).

[Jαβ, πν] = [xαπβ − xβπα + r2 Fαβ, πν]

= −i(παδβν − πβδαν) − i xα Fβν + i xβ Fαν

+2i xν Fαβ + ir2[∇ν, Fαβ]

= −i(παδβν − πβδαν).

[Jαβ, Fα′β ′] = [xαπβ − xβπα + r2 Fαβ, Fα′β ′ ]

= xα[πβ, Fα′β ′] − xβ[πα, Fα′β ′] + r2[Fαβ, Fα′β ′]

= i
xα

r2
(2xβ Fα′β ′ + xα′ Fββ ′ + xβ ′ Fα′β) − i

xβ

r2
(2xα Fα′β ′ + xα′ Fαβ ′ + xβ ′ Fα′α)

+r2[Fαβ, Fα′β ′]

= r2[Fαβ, Fα′β ′ ] − i

r2

(−xαxα′ Fββ ′ − xαxβ ′ Fα′β + xβ xα′ Fαβ ′ + xβ xβ ′ Fα′α
)

= iδαα′ Fββ ′ + iδββ ′ Fαα′ − iδαβ ′ Fβα′ − iδβα′ Fαβ ′ .

�
By using Lemma 2 and the definition of Jαβ , one can easily check that Jαβ ’s satisfy the standard

commutation relation of so(D) Lie algebra. Then Lemma 2 may be paraphrased as follows: under
the commutation action of Jαβ ’s, r and 1

r transform as so(D) scalars, xα’s and πα’s transform as
so(D) vectors, and Fαβ’s transform as a so(D) bi-vectors. It is then clear that T , �D+1, and �−1

transform as so(D) scalars; �A, �M , and �� transform as so(D) vectors. This completes the proof for
Eq. (13) in the case when it involves Jαβ .

By using identities xαAα = 0 and xα Fαβ = 0, one can check that [−�r · ∇, �r ] = −�r , [−�r ·
∇, r ] = −r , [−�r · ∇, 1

r ] = 1
r , [−�r · ∇, �π ] = �π . That is, −�r · ∇ is the dimension operator in physics.

It is then clear that

[�−1, T ] = −i�D+1, [�D+1, T ] = −i�−1, [��, T ] = �0. (16)

Consequently,

[Mα, T ] = [i[�α, �−1], T ] = i[�α, [�−1, T ]] + i[[�α, T ], �−1]

= [�α, �D+1] = −i Aα,

[Aα, T ] = [i[�α, �D+1], T ] = i[�α, [�D+1, T ]] + i[[�α, T ], �D+1]

= [�α, �−1] = −i Mα. (17)

Downloaded 14 Jun 2011 to 129.78.72.28. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



042106-7 Generalized MICZ-Kepler problems J. Math. Phys. 52, 042106 (2011)

This completes the proof of Eq. (13) in the case when it involves T .
The remaining verifications are divided into four cases.
Case 1:

[�α, �β] = −i Jαβ, [�α, �D+1] = −i Aα,

[�α, �−1] = −i Mα, [�D+1, �−1] = −iT, (18)

which are just the defining relations. So case 1 is done.
Case 2:

[Mα, �β] = −iηαβ�−1, [Aα, �β ] = −iηαβ�D+1

or equivalently

[Zα, �β] = −iηαβ X, [Wα, �β ] = −iηαβY. (19)

Proof: Since [Wα, �β] = [xα, rπβ] = irδαβ = −iηαβY , we just need to verify the first identity.
Note that [Zα, r ] = 2i�α (see case 3 below), so

[Zα, �β] = r [Zα, πβ ] + 2i�απβ

= r [xαπ2 − 2πα(�r · �π ) + 2r2 Fαβπβ − c

r2
xα + i(D − 3)πα, πβ] + 2irπαπβ

= r
(
iδαβπ2 − 2i xα Fγβπγ

)+ r (2i Fαβ(�r · �π) − 2iπαπβ) + r (−2ir2 Fαγ Fγβ

+ [2r2 Fαγ , πβ ]πγ ) + cr [πβ,
xα

r2
] + (D − 3)r Fαβ + 2irπαπβ

= iδαβrπ2 − 2ir xα Fγβπγ + 2ir Fαβ(�r · �π ) + r (−2ir2 Fαγ Fγβ + 4i xβ Fαγ πγ

− 2r2[πβ, Fαγ ]πγ ) + cr [πβ,
xα

r2
] + (D − 3)r Fαβ

= iδαβrπ2 − 2ir3 Fαγ Fγβ + 2ir (2xβ Fαγ + xα Fβγ + xγ Fαβ + r2[∇β, Fαγ ])πγ

+ cr [πβ,
xα

r2
] + (D − 3)r Fαβ

= iδαβrπ2 + 2ir3 Fγα Fγβ − icr
(
δαβ − 2

xαxβ

r4

)
+ 2(n − 1)r Fαβ

= iδαβ(rπ2 + c

r2
) = −iηαβ X. �

Case 3:

[Mα, �−1] = i�α, [Mα, �D+1] = 0

[Aα, �−1] = 0, [Aα, �D+1] = −i�α.

or equivalently,

[ �W , Y ] = [ �Z , X ] = 0, [ �W , X ] = [ �Z , Y ] = 2i ��. (20)
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Proof: It is clear that [ �W , Y ] = 0. Now [Wα, X ] = r [xα, π2] = ir{πβ, δαβ} = 2i�α . Next, using
the identity Fαβ xβ = 0, we have

[Zα, Y ] = [xαπ2 − 2πα(�r · �π ) + 2r2 Fαβπβ − c

r2
xα + i(D − 3)πα, r ]

= xα[π2, r ] − 2[πα(�r · �π ), r ] − 2ir Fαβ xβ + (D − 3)
xα

r

= −i xα{πβ,
xβ

r
} − 2πα[(�r · �π), r ] − 2[πα, r ](�r · �π ) + (D − 3)

xα

r

= −(D − 1)
xα

r
− 2i

xα

r
�r · �π + 2iπαr + 2i

xα

r
(�r · �π ) + (D − 3)

xα

r

= −2
xα

r
+ 2iπαr = 2irπα = 2i�α.

Finally,

[
1

r
, Zα] = [

1

r
, xαπ2 − 2πα(�r · �π ) + 2r2 Fαβπβ − c

r2
xα + i(D − 3)πα]

= xα[
1

r
, π2] − 2[

1

r
, πα(�r · �π)] + 2r2 Fαβ[

1

r
, πβ] + i(D − 3)[

1

r
, πα]

= −i xα{xβr3, πβ} − 2πα[
1

r
, (�r · �π )] − 2[

1

r
, πα](�r · �π ) − 2ir2 Fαβ xβr3 + (D − 3)

xα

r3

= −i xα[πβ, xβr3] − 2i
xα

r3
�r · �π + 2iπα

1

r
+ 2i

xα

r3
(�r · �π ) + (D − 3)

xα

r3

= 2iπα

1

r
;

[rπ2, Zα] = [r, Zα]π2 + r [π2, Zα]

= −2i�απ2 + r [π2, Zα]

= −2i�απ2 + r [π2, xαπ2 − 2πα(�r · �π ) + 2r2 Fαβπβ − c

r2
xα + i(D − 3)πα]

= −2i�απ2 + r
(
[π2, xα]π2 − 2[π2, πα(�r · �π )] + 2[π2, r2 Fαβπβ]

)
+ r
(
−c[π2,

xα

r2
] + i(D − 3)[π2, πα]

)
= −2i�απ2 + r

(−2iπαπ2 − 2[π2, πα](�r · �π ) + 4iπαπ2 + 2[π2, r2 Fαβπβ]
)

+ r
(
−c[π2,

xα

r2
] + i(D − 3)[π2, πα]

)
= r

(
−2[π2, πα](�r · �π) + 2[π2, r2 Fαβ]πβ + 2r2 Fαβ[π2, πβ ] − c[π2,

xα

r2
]

+ i(D − 3)[π2, πα]
)

= r
(−2[π2, πα](�r · �π ) − 2[π2, xαπβ − xβπα]πβ

)
+ r
(

2r2 Fαβ[π2, πβ] − c[π2,
xα

r2
] + i(D − 3)[π2, πα]

)
= r

(−2[π2, πα](�r · �π ) − 2[π2, xαπβ]πβ + 2[π2, xβπα]πβ

)
+ r
(

2r2 Fαβ[π2, πβ] − c[π2,
xα

r2
] + i(D − 3)[π2, πα]

)
= r

(−2[π2, πα](�r · �π ) − 2xα[π2, πβ ]πβ + 2xβ[π2, πα]πβ + 4Fαβπβ

)
+ r
(

2r2 Fαβ[π2, πβ] − c[π2,
xα

r2
] + i(D − 3)[π2, πα]

)
.
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To continue we note that [π2, πα] = 2i Fαγ πγ , so

[rπ2, Zα] = r
(−4i Fαγ πγ (�r · �π ) − 4i xα Fβγ πγ πβ + 4i xβ Fαγ πγ πβ + 4Fαβπβ

)
+ r
(

4ir2 Fαβ Fβγ πγ − c[π2,
xα

r2
] − 2(D − 3)Fαγ πγ ]

)
= r

(
2xα Fβγ Fβγ + 4ir2 Fαβ Fβγ πγ − c[π2,

xα

r2
] − 2(D − 3)Fαγ πγ ]

)
= 4c2

xα

r3
− cr [π2,

xα

r2
] + 4ir

(
r2 Fαβ Fβγ + i

D − 3

2
Fαγ

)
πγ

= 4c2
xα

r3
+ icr{πβ, [∇β,

xα

r2
]} − 4ir

c2

n

(
δαγ

r2
− xαxγ

r4

)
πγ

= 4c2
xα

r3
+ icr{πβ,

δαβ

r2
− 2

xαxβ

r4
} + 4irc

(
− 1

r2
πα + xα

r4
�r · �π

)
= 4c2

xα

r3
+ icr [πβ,

δαβ

r2
− 2

xαxβ

r4
] − 2ic

1

r
πα.

Therefore,

[X, Zα] = [rπ2 + c

r
, Zα] = 4c2

xα

r3
+ icr [πβ,

δαβ

r2
− 2

xαxβ

r4
] − 2ic[

1

r
, πα]

= 4nc
xα

r3
− 2c(D − 2)

xα

r3
− 2c

xα

r3
= 0. �

Case 4:

[Mα, Mβ ] = −i Jαβ, [Aα, Mβ] = −iηαβ T, [Aα, Aβ ] = i Jαβ

or equivalently,

[Zα, Zβ] = [Wα, Wβ ] = 0, [Zα, Wβ] = −2i
(
ηαβ T + Jαβ

)
. (21)

Proof: It is clear that [Wα, Wβ ] = 0 because Wα = xα . Next,

[Zα, Wβ ] = [xαπ2 − 2πα(�r · �π ) + 2r2 Fαγ πγ − c

r2
xα + i(D − 3)πα, xβ ]

= xα[π2, xβ ] − 2[πα(�r · �π ), xβ] + 2r2 Fαγ [πγ , xβ ] + i(D − 3)[πα, xβ ]

= −2i xαπβ − 2πα[(�r · �π ), xβ ] − 2[πα, xβ ](�r · �π ) − 2ir2 Fαβ + (D − 3)δαβ

= −2i xαπβ + 2iπαxβ + 2iδαβ (�r · �π ) − 2ir2 Fαβ + (D − 3)δαβ

= −2i
(
xαπβ − xβπα + r2 Fαβ

)+ 2iδαβ

(
�r · �π − i

D − 1

2

)
= −2i

(
ηαβ T + Jαβ

)
.

Finally, using results from case 2 and case 3, we have

−i[Zα, Zβ ] = [[�α, X ], Zβ ] = [�α X − X�α, Zβ ]

= [�α X, Zβ ] − [X�α, Zβ ] = [�α, Zβ ]X − X [�α, Zβ]

= [[�α, Zβ], X ] = [iηαβ X, X ] = 0.

End of the proof of part (1) of Theorem 2. �
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B. Proof of part (2)

We just need to verify equality∑
1≤A≤D+1

{JAB, JAC } −
∑

−1≤A≤0

{JAB, JAC } = 2aηBC (22)

under the condition that B ≤ C , to be more specific, we need to verify the following identities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
1≤α≤D{Jαβ, Jαγ } + {Aβ, Aγ } − {Mβ, Mγ } − {�β, �γ } = 2aηβγ ,∑

1≤α≤D{Jαβ, Aα} − {Mβ, T } − {�β, �D+1} = 0,∑
1≤α≤D A2

α − T 2 − �2
D+1 = −a,∑

1≤α≤D{Jαβ, Mα} − {Aβ, T } − {�β, �−1} = 0,∑
1≤α≤D{Aα, Mα} − {�D+1, �−1} = 0,∑

1≤α≤D M2
α + T 2 − �2

−1 = a,∑
1≤α≤D{Jαβ, �α} − {Aβ, �D+1} + {Mβ, �−1} = 0,∑

1≤α≤D{Aα, �α} + {T, �−1} = 0,∑
1≤α≤D{Mα, �α} + {�D+1, T } = 0,∑

1≤α≤D �2
α + �2

D+1 − �2
−1 = a.

(23)

The checking is then divided into six cases.
Case 1: ∑

1≤α≤D

�2
α + �2

D+1 − �2
−1 = a. (24)

Proof:∑
1≤α≤D

�2
α + �2

D+1 − �2
−1 = rπαrπα − 1

2
(XY + Y X )

= r2π2 − i�r · �π − 1

2
(rπ2r + c + r2π2 + c)

= −i�r · �π − 1

2
r [π2, r ] − c = −i�r · �π + i

2
r{πμ,

xμ

r
} − c

= i

2
r [πμ,

xμ

r
] − c = D − 1

2
− c = a. �

Case 2: ∑
1≤α≤D

{Aα, �α} + {T, �−1} = 0,
∑

1≤α≤D

{Mα, �α} + {�D+1, T } = 0;

or equivalently ∑
1≤α≤D

{Zα, �α} + {X, T } = 0,
∑

1≤α≤D

{Wα, �α} − {Y, T } = 0. (25)

Proof: We check the second identity first:∑
1≤α≤D

{Wα, �α} − {Y, T } = {xα, rπα} − {r, �r · �π − D − 1

2
i}

= 2r�r · �π + r [πα, xα] − 2r�r · �π − [�r · �π, r ] + i(D − 1)r

= 0.
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Then we check the first identity:∑
1≤α≤D

{Zα, �α} + {X, T } = 2�α Zα + 2T X + [Zα, �α] + [X, T ]

= 2(rπαxαπ2 − 2rπ2(�r · �π ) + 2rπαr2 Fαβπβ − rπα

c

r2
xα + i(D − 3)rπ2)

+ 2(�r · �π − D − 1

2
i)(rπ2 + c

r
) − iηαα X − i X

= 2
(

r (�r · π )π2 − 2rπ2(�r · �π ) + 2r3 Fαβπαπβ − crπα

xα

r2
− 3irπ2

)
+ 2�r · �π (rπ2 + c

r
)

= 2
(

2irπ2 − rπ2(�r · �π ) − ir3 Fαβ Fαβ − c

r
�r · �π − cr [πα,

xα

r2
] − 3irπ2

)
+ 2�r · �π (rπ2 + c

r
)

= 2
(

[�r · �π, rπ2] − ir3 Fαβ Fαβ + [�r · �π,
c

r
] − cr [πα,

xα

r2
] − irπ2

)
= 2

(
−ir3 Fαβ Fαβ + i

c

r
+ ic

D − 2

r

)
= 2

(
−2i

c2

r
+ ic

D − 1

r

)
= 0. �

Case 3:

∑
1≤α≤D

{Jαβ, �α} − {Aβ, �D+1} + {Mβ, �−1} = 0. (26)

Proof: ∑
1≤α≤D

{Jαβ, �α} − {Aβ, �D+1} + {Mβ, �−1}

= 2Jαβ�α + [�α, Jαβ ] + 1

2

({X, Wβ} + {Y, Zβ})
= 2(xαπβrπα − xβπαrπα + r2 Fαβrπα) − i(D − 1)�β

+ X Wβ + Y Zβ + 2i�β

= 2(πβr�r · �π + [xα, πβr ]πα − xβ [πα, r ]πα − xβrπ2 + r3 Fαβπα) − i(D − 3)�β

+ (rπ2 + c

r
)xβ + r xβπ2 − 2rπβ(�r · �π) + 2r3 Fβγ πγ − c

r
xβ + i(D − 3)rπβ

= 2(πβr�r · �π + irπβ + i
xβ

r
�r · π ) − xβrπ2

+ rπ2xβ − 2rπβ(�r · �π )

= 2(rπβ�r · �π + irπβ) + [rπ2, xβ ] − 2rπβ(�r · �π )

= 2([rπβ, �r · �π ] + irπβ) − 2irπβ = 0. �
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Case 4: ∑
1≤α≤D

A2
α − T 2 − �2

D+1 = −a,

∑
1≤α≤D

M2
α + T 2 − �2

−1 = a,

∑
1≤α≤D

{Aα, Mα} − {�D+1, �−1} = 0;

or equivalently ∑
1≤α≤D

Z2
α = X2,

∑
1≤α≤D

{Zα, Wα} + 4T 2 − {X, Y } = 4a. (27)

Here we have used the fact that
∑

1≤α≤D W 2
α = Y 2.

Proof: To check the first identity, we note that Zα = i[�α, X ] and [Zα, X ] = 0, so

Z2
α = i

2
[{Zα, �α}, X ].

Then ∑
1≤α≤D

Z2
α = i

2

∑
1≤α≤D

[{Zα, �α}, X ]

= − i

2
[{X, T }, X ] use results from case 2

= − i

2
[T, X2] = X2.

To check the second identity, we note that Zα = i[�α, X ] and [Wα, X ] = 2i�α , so

{Zα, Wα} = i[{Wα, �α}, X ] + 4�2
α.

Then ∑
1≤α≤D

{Zα, Wα} = i[{Y, T }, X ] + 4
∑

1≤α≤D

�2
α use results from case 2

= i ({Y, [T, X ]} + {[Y, X ], T }) + 4
∑

1≤α≤D

�2
α

= i ({Y, i X} + {2iT, T }) + 4
∑

1≤α≤D

�2
α

= −{X, Y } − 4T 2 + 4
∑

1≤α≤D

�2
α.

So ∑
1≤α≤D

{Zα, Wα} + 4T 2 − {X, Y } = 4
∑

1≤α≤D

�2
α − 2{X, Y }

= 4a use results from case 1. �
Case 5: ∑

1≤α≤D

{Jαβ, Aα} − {Mβ, T } − {�β, �D+1} = 0,

∑
1≤α≤D

{Jαβ, Mα} − {Aβ, T } − {�β, �−1} = 0;
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or equivalently { ∑
1≤α≤D{Jαβ, Zα} − {Zβ, T } − {�β, X} = 0,∑

1≤α≤D{Jαβ, Wα} + {Wβ, T } − {�β, Y } = 0.
(28)

Proof: We check the second identity first:∑
1≤α≤D

{Jαβ, Wα} + {Wβ, T } − {�β, Y }

= 2xα Jαβ + [Jαβ, xα] + 2xβ�r · �π + [�r · �π, xβ ] − i(D − 1)xβ − 2r2πβ − r [πβ, r ]

= 2r2πβ − 2xβ�r · �π + [Jαβ, xα] + 2xβ�r · �π + [�r · �π, xβ ] − i(D − 1)xβ − 2r2πβ − r [πβ, r ] = 0.

To check the first identity, we note that Zα = i[�α, X ] and [Jαβ, X ] = 0, so

∑
1≤α≤D

{Jαβ, Zα} = i[{Jαβ, �α}, X ]

= −i[X Wβ + ZβY, X ] use results from case 3

= −i X [Wβ, X ] − i[Zβ, X ]Y − i Zβ[Y, X ]

= 2X�β + 2Zβ T use results from commutation relations

= {X, �β} + {Zβ, T } + [X, �β ] + [Zβ, T ]

= {X, �β} + {Zβ, T } + i Zβ − i Zβ = {X, �β} + {Zβ, T }.

So the first identity is checked.

�

Case 6:

∑
1≤α≤D

{Jαβ, Jαγ } + {Aβ, Aγ } − {Mβ, Mγ } − {�β, �γ } = 2aηβγ . (29)

Proof: ∑
1≤α≤D

{Jαβ, Jαγ } = i
∑

1≤α≤D

{Jαβ, [�α, �γ ]}

= i
∑

1≤α≤D

(
[{Jαβ, �α}, �γ ] − {[Jαβ, �γ ], �α})

= −i[X Wβ + ZβY, �γ ] − {�αδβγ − �βδαγ , �α}
= −i X [Wβ, �γ ] − i Zβ[Y, �γ ] − i[X, �γ ]Wβ − i[Zβ, �γ ]Y

use results from case 3

−2δβγ

∑
1≤α≤D

�2
α + {�β, �γ }

= −ηβγ Y X + Zβ Wγ + Zγ Wβ − ηβγ Y X

+2ηβγ

∑
1≤α≤D

�2
α + {�β, �γ }.
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So∑
1≤α≤D

{Jαβ, Jαγ } − {�β, �γ } = ηβγ

(
2
∑

1≤α≤D

�2
α − 2Y X

)
+ Zβ Wγ + Zγ Wβ

= ηβγ

(
2
∑

1≤α≤D

�2
α − 2Y X

)
+ 1

2

({Zβ, Wγ } + {Zγ , Wβ})
−1

2

(
[Zβ, Wγ ] + [Zγ , Wβ ]

)
= ηβγ

(
2
∑

1≤α≤D

�2
α − 2Y X + 2iT

)
+ 1

2

({Zβ, Wγ } + {Zγ , Wβ})

= ηβγ

(
2
∑

1≤α≤D

�2
α − {X, Y }

)
− {Aβ, Aγ } + {Mβ, Mγ }.

So the identity is true because in case 1 we have verified that

2
∑

1≤α≤D

�2
α − {X, Y } = 2a. �

End of the proof of part (2) of Theorem 2.

IV. REPRESENTATION THEORETICAL ASPECTS—THE PRELIMINARY PART

The main objective in the rest of this paper is to show that the algebraic direct sum H of
the energy eigenspaces of a generalized MICZ-Kepler problem in dimension (2n + 1) is a unitary
highest weight (g, K )-module where g = so(2n + 4) and K = Spin(2) ×Z2 Spin(2n + 2). Along
the way, we prove Theorem 1.

We can label the generators of g0 [the Lie algebra of Spin(2, 2n + 2)] as follows:

MAB = −MB A for A, B = −1, 0, 1, . . . , 2n + 2,

where in the (2n + 4)-dimensional defining representation, the matrix elements of MAB are
given by

[MAB]J K = −i(ηAJ ηBK − ηB J ηAK ),

with the indefinite metric tensor η being diag{+ + − · · · −} relative to the following order: −1, 0,
1, ..., 2n + 2 for the indices.

One can easily show that

[MAB, MA′ B ′ ] = i(ηAA′ MB B ′ + ηB B ′ MAA′ − ηAB ′ MB A′ − ηB A′ MAB ′). (30)

In view of the sign difference between the right hand sides of Eqs. (13) and (30), we define the
representation (π̃ , C∞(S2μ)) of g as follows: for ψ ∈ C∞(S2μ),

π̃ (MAB)(ψ) = − ĴABψ , (31)

where, by definition, ĴAB := 1√
r

JAB
√

r .

However, what is really relevant for us is just a subspace of C∞(S2μ), i.e., H. Actually, the story
is bit more involved: what is really invariant under π̃ is not H, but a twisted version of H which is
denoted by H̃ later; and there is a twist linear equivalence

τ : H → H̃
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which preserves the L2-norm, such that, viewing τ as an equivalence of representations, we get
representation (π,H). Because of this intricacy, we shall devote Subsections IV A and IV B to some
preparations.

A. Review of the (bound) energy eigenspaces

The bound eigen-states (i.e., L2 eigen-sections of the Hamiltonian) of the generalized MICZ-
Kepler problems have been analyzed in section 5.1 of Ref. 4 by using the classical analytic methods
with the help of the representation theory for compact Lie groups. Recall that the (bound) energy
spectrum is

EI = − 1

2(I + n + |μ|)2
, (32)

where I = 0, 1, 2, · · · .
Denote by S2μ|S2n the restriction bundle of S2μ to the unit sphere S2n . As a hermitian bundle

with a hermitian connection, S2μ|S2n is just the vector bundle

Spin(2n + 1) ×Spin(2n) s2μ → S2n

with the natural Spin(2n + 1)-invariant connection. Note that, as a hermitian bundle with a hermitian
connection, S2μ is the pullback of S2μ|S2n under the natural projection R2n+1

∗ → S2n . Let L2(S2μ),
L2(S2μ|S2n ) be the L2-sections of S2μ and S2μ|S2n , respectively. It is clear that Spin(2n + 1) acts
on both L2(S2μ) and L2(S2μ|S2n ) unitarily. In fact, as a representation of Spin(2n + 1), L2(S2μ|S2n )
is the induced representation of s2μ from Spin(2n) to Spin(2n + 1); therefore, by the Frobenius
reciprocity plus a branching rule24 for (Spin(2n + 1), Spin(2n)), one has

L2(S2μ|S2n ) =
⊕̂

l≥0
Rl , (33)

where Rl is the irreducible representation of Spin(2n + 1) with highest weight (l +
|μ|, |μ|, · · · , |μ|). Observe that, if we use X̃ to denote the horizontal lift of a vector field X on
R2n+1

∗ , then the vector field [r̃∂α, r̃∂β] can be shown to be just the right invariant vector field on
R+ × Spin(2n + 1) whose value at (r, e) (where e is the group identity element) is (0,−iγαβ ), i.e.,
(0,− 1

4 [eα, eβ ]). Consequently, the infinitesimal action of Spin(2n + 1) on C∞(S2μ) is just the re-
striction of π̃ to spanR{Mαβ | 1 ≤ α < β ≤ 2n + 1} = so0(2n + 1). It is then clear that π̃ (Mαβ)’s
act only on the angular part of the wave sections—a consequence which can also be deduced from
the fact that Ĵαβ’s commute with the multiplication by a smooth function of r .

Let {Ylm(�)}m∈I(l) be an orthornormal (say Gelfand–Zeltin) basis for Rl , and

lμ = l + |μ| + n − 1 .

Then, an orthornormal basis for the energy eigenspace HI with energy EI is

{ψklm := Rklμ(r )Ylm(�) | k + l = I + 1, k ≥ 1, l ≥ 0, m ∈ I(l)}, (34)

where Rklμ ∈ L2(R+, r2n dr ) is a square integrable (with respect to the measure r2n dr ) solution of
the radial Schrödinger equation:(

− 1

2r2n
∂r r2n∂r + lμ(lμ + 1) − n(n − 1)

2r2
− 1

r

)
Rklμ = Ek−1+l Rklμ . (35)

Note that Rklμ is of the form

r−n yklμ (r ) exp

(
− r

k + lμ

)
with yklμ (r ) satisfying equation(

d2

dr2
− 2

k + lμ

d

dr
+
[

2

r
− lμ(lμ + 1)

r2

])
yklμ (r ) = 0. (36)
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In term of the generalized Laguerre polynomials,

yklμ (r ) = c(k, l)rlμ+1L
2lμ+1
k−1

(
2

k + lμ
r

)
,

where c(k, l) is a constant, which can be uniquely determined by requiring c(k, l) > 0 and∫∞
0 |Rklμ(r )|2r2ndr = 1.

We are now ready to state the following remark.

Remark 1: (1) HI is the space of square integrable solutions of Eq. Hψ = EI ψ .
(2) As representation of so(2n + 1)

HI =
I⊕

l=0

Dl (37)

where Dl := span{ψ(I−l+l)lm | m ∈ I(l)} is the highest weight module with highest weight (l +
|μ|, |μ|, · · · , |μ|).

(3) {HI | I = 0, 1, 2, . . .} is the complete set of (bound) energy eigenspaces.

For the completeness of this review, we state part of Theorem 1 from Ref. 4 below:

Theorem 3: For the (2n + 1)-dimensional generalized MICZ-Kepler problem with magnetic
charge μ, the following statements are true:

(1) The negative energy spectrum is

EI = − 1/2

(I + n + |μ|)2
,

where I = 0, 1, 2, . . .;
(2) The Hilbert space H (μ) of negative-energy states admits a linear Spin(2n + 2)-action

under which there is a decomposition

H (μ) =
⊕̂∞

I=0
HI ,

where HI is the irreducible Spin(2n + 2)-module with highest weight (I + |μ|, |μ|, · · · , |μ|, μ);
(3) The linear action in part (2) extends the manifest linear action of Spin(2n + 1), and HI in

part (2) is the energy eigenspace with eigenvalue EI in part (1).

It was shown in Ref. 4 that the bound eigen-states are precisely the ones with negative energy
eigenvalues. We would like to remark that, in dimension five, a similar result obtained with a similar
method has already appeared in Ref. 25.

B. Twisting

As we said before, because of the technical intricacy, we need to introduce the notion of twisting.
Let us start with the listing of some important spaces used later:

• HI — the I th bound energy eigenspace;
• H — the algebraic direct sum of all bound energy eigenspaces;
• H or H (μ) — the completion of H under the standard L2-norm;
• Hlm — the subspace of H spanned by {ψklm | k ≥ 1, l, m f i xed};
• Hlm — the completion of Hlm under the standard L2-norm.

Note that these spaces are all endowed with the unique hermitian inner product which yields
the standard L2-norm, i.e.,

〈ψ, φ〉 :=
∫
RD∗

(ψ, φ) d D x , (38)

where (ψ, φ) is the point-wise hermitian inner product and d D x is the Lebesgue measure.
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It is clear from Subsection IV A that

B := {ψklm | k ≥ 1, l ≥ 0, m ∈ I(l)} (39)

is an orthonormal basis for both H and H .
To study the action of ĴAB’s, we need to “twist” B, HI , Hlm, Hlm, H, and H to get B̃, H̃I ,

H̃lm, H̃lm, H̃, and H̃ , respectively. It suffices to twist the elements of B. Let τ : B → B̃ be defined
as follows:

τ (ψklm)(r,�) := (k + lμ) e−iθk+lμ T̂

(
1√
r
ψklm(r,�)

)
= (k + lμ)n+1 1√

r
ψklm((k + lμ)r,�)

∝ rl+|μ|− 1
2 L

2lμ+1
k−1 (2r ) e−r Ylm(�), (40)

where T̂ = 1√
r
T

√
r , and θI = − ln I for any positive number I . For simplicity, we write τ (ψklm) as

ψ̃klm. One can check that∫
RD∗

(ψ̃klm, ψ̃klm) d Dx =
∫
RD∗

(ψklm, ψklm) d Dx = 1.

By using Eq. (40) and the orthogonality identities for the generalized Laguerre polynomials, one
can see that ψ̃klm is orthogonal to ψ̃k ′lm when k 	= k ′.

It is now clear how to twist all the relevant spaces listed in the beginning of this subsection. For
example,

H̃I :=
{

e−iθIμ+1 T̂

(
1√
r
ψ

)
| ψ ∈ HI

}
. (41)

Since HI is spanned by {ψklm | k + l = I + 1, k ≥ 1, l ≥ 0, m ∈ I(l)}, it follows that H̃I is spanned
by

{ψ̃klm | k + l = I + 1, k ≥ 1, l ≥ 0, m ∈ I(l)}.
We shall call H̃ (μ) the twisted Hilbert space of the bound states for the (2n + 1)-dimensional

generalized MICZ-Kepler problem with magnetic charge μ. We remark that the twisting map26

τ : H (μ) → H̃ (μ) (42)

is the unique linear isometry which sends ψklm to ψ̃klm; moreover, τ maps all relevant sub-
spaces of H (μ) isomorphically onto the corresponding relevant twisted subspaces. Note that
Ĵαβ = 1√

r
Jαβ

√
r = Jαβ obviously acts on H̃I as hermitian operator, so r := span{Mαβ | 1 ≤ α

< β ≤ 2n + 1} = so(2n + 1) acts unitarily on H̃I via π̃ .
Recall that for non-negative integer I , we use Iμ to denote I + n + |μ| − 1.

Proposition 1: (1) ψ̃klm is an eigenvector of �̂−1 with eigenvalue k + lμ.
(2) H̃I is the space of square integrable solutions of Eq. �̂−1ψ = (Iμ + 1)ψ .
(3) �̂−1 is a self-adjoint operator on H̃ (μ) and H̃I is the eigenspace of �̂−1 with eigenvalue

Iμ + 1.
(4) As representation of r,

H̃I =
I⊕

l=0

D̃l, (43)

where D̃l := span{ψ̃(I−l+1)lm | m ∈ I(l)} is the highest weight module with highest weight (l +
|μ|, |μ|, · · · , |μ|).
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(5) H̃ (μ) = L2(S2μ).

Proof: (1) The proof is based on the ideas from Ref. 5. Since

Hψklm = Ek+l−1ψklm, (44)

we have
√

r (H − Ek+l−1)ψklm = 0 which can be rewritten as

(
1

2
X̂ − 1 − Ek+l−1Ŷ )(

1√
r
ψklm) = 0,

where X and Y are given by Eq. (9). In terms of �̂−1 and �̂D+1, we can recast the above equation as(
(
1

2
− Ek+l−1)�̂−1 + (

1

2
+ Ek+l−1)�̂D+1 − 1

)
(

1√
r
ψklm) = 0.

Plugging ψklm = 1
k+lμ

√
reiθk+lμ T̂

(
ψ̃klm

)
into the above equation and using identities⎧⎨⎩ e−iθ T̂ �̂−1 eiθ T̂ = cosh θ �̂−1 + sinh θ �̂D+1

e−iθ T̂ �̂D+1 eiθ T̂ = sinh θ �̂−1 + cosh θ �̂D+1,

(45)

we arrive at the following equation:

�̂−1ψ̃klm = (k + lμ)ψ̃klm . (46)

(2) Note that the Barut–Bornzin process going from Eq. (44) to Eq. (46) is completely reversible.
Therefore, part (2) is just a consequence of part (1) of Remark 1.

(3) Note that �̂−1 is defined on the dense linear subspace H̃ of H̃ (μ). It is easy to check that

〈ψ̃k ′l ′m′ , �̂−1ψ̃klm〉 = 〈�̂−1ψ̃k ′l ′m′ , ψ̃klm〉
for any ψ̃klm and ψ̃k ′l ′m′ . Therefore, �̂−1 (to be precise, it should be its closure) is a self-adjoint
operator on H̃ (μ). In view of part (2), H̃I is the eigenspace of �̂−1 with eigenvalue Iμ + 1.

(4) This part is clear due to part (2) of Remark 1.
(5) Recall that ψ̃klm(r,�) = R̃klμ(r ) Ylm(�) where R̃klμ(r ) ∝ rl+|μ|− 1

2 L
2lμ+1
k−1 (2r ) e−r . By the

well-known property for the generalized Laguerre polynomials, for any l ≥ 0, {R̃klμ}∞k=1 form an
orthonormal basis for L2(R+, r2n dr ).

By virtue of Theorem II. 10 of Ref. 27 and Eq. (33),

L2(S2μ) = L2(R+, r2n dr ) ⊗ L2(S2μ |S2n )

=
⊕̂∞

l=0

(
L2(R+, r2n dr ) ⊗ Rl

)
.

Therefore, B̃ is an orthonormal basis for L2(S2μ), consequently H̃ (μ) = L2(S2μ).
We end this subsection with �
Remark 2: H̃I is the eigenspace of π̃ (H0) with eigenvalue −(Iμ + 1). Here π̃ (H0) = −�̂−1 is

viewed as an endomorphism of H̃.

V. REPRESENTATION THEORETICAL ASPECTS—THE FINAL PART

We start with some notations:

• G = Spin(2, 2n + 2) — the double cover of SO0(2, 2n + 2) characterized by the homomor-
phism π1(SO0(2, 2n + 2)) = Z ⊕ Z2 → Z2 sending (a, b) to ā + b;

• g0 — the Lie algebra of Spin(2, 2n + 2);
• g — the complexfication of g0, so g = so(2n + 4);
• H0 — defined to be M−1,0;
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• Hj — defined to be −M2 j−1,2 j for 1 ≤ j ≤ n + 1;
• K := Spin(2) ×Z2 Spin(2n + 2) — a maximal compact subgroup of Spin(2, 2n + 2);
• k0 — the Lie algebra of K ;
• k — the complexfication of k0, so k = so(2) ⊕ so(2n + 2);
• r — the subalgebra of g generated by {MAB | 1 ≤ A < B ≤ 2n + 1}, so r0 := g0 ∩ r

= so0(2n + 1);
• s — the subalgebra of g generated by {MAB | 1 ≤ A < B ≤ 2n + 2}, so s0 := g0 ∩ s

= so0(2n + 2);
• sl(2) — the subalgebra of g generated by M−1,D+1, M0,D+1 and M−1,0, so sl0(2) := g0 ∩ sl(2)

= so0(2, 1);
• U (sl(2)) — the universal enveloping algebra of sl(2).

A. H̃ is a unitary highest weight Harish-Chandra module

The goal of this subsection is to show that (π̃ , H̃) is a unitary highest weight (g, K )-module.

Proposition 2: (1) Each π̃ (MAB) maps H̃ into H̃, so (π̃ , H̃) is a representation of g.
(2) Each π̃ (MAB) is a hermitian operator on H̃, so (π̃ , H̃) is a unitary representation of g.
(3) (π̃ |sl(2), H̃lm) is the discrete series representation of so(2, 1) with highest weight −lμ − 1.

Proof: (1) We follow the convention of Ref. 28 for describing the root space of g = so(2n + 4).
Take as a basis of the Cartan subalgebra of g the following elements:

H0 = M−1,0, Hj = −M2 j−1,2 j , j = 1, · · · , n + 1.

Let η, η′ = ±1. We take the following root vectors:

Eηe j +η′ek = 1

2

(
M2 j−1,2k−1 + iηM2 j,2k−1 + iη′M2 j−1,2k − ηη′M2 j,2k

)
,

where 0 ≤ j < k ≤ n + 1. This way we obtain a Cartan basis for g. Therefore, for ψI ∈ H̃I , we
have

π̃ (H0)(π̃(Eα)(ψI )) = (−Iμ − 1 + α0)π̃(Eα)(ψI )

= (−(I − α0)μ − 1)π̃ (Eα)(ψI ), (47)

where α0 (which can be 0, or −1 or 1) is the 0-th component of α. It is not hard to see that π̃ (Eα)(ψI ) is
square integrable,29 so in view of part (2) of Proposition 1, Eq. (47) implies that π̃(Eα)(ψI ) ∈ H̃I−α0 .
(Here H−1 = 0.) Therefore, π̃ (Eα) maps any H̃I , hence H̃, into H̃. By a similar argument, one can
show that π̃ (Hi ) maps H̃ into itself. Since H ’s and E’s form a basis for g, this implies that π̃ (MAB)
maps H̃ into itself.

(2) It is equivalent to checking that each ĴAB := 1√
r

JAB
√

r is a hermitian operator on H̃. First

of all, it is not hard to see that, when O = πα, r, 1
r ,

√
r , 1√

r
, we always have

〈ψ1,Oψ2〉 = 〈Oψ1, ψ2〉 (48)

for any ψ1, ψ2 in H̃. It is equally easy to see that Eq. (48) is always true for any ψ1, ψ2 in H̃ when
O is �̂α = √

rπα

√
r , X̂ = √

rπ2√r + c
r , or Ŷ = r . It is then clear from definitions (9) and (10) that

Eq. (48) is always true for any ψ1, ψ2 in H̃ when O = ĴAB .
(3) Let us first show that π̃ (M−1,D+1), π̃ (M0,D+1), and π̃ (M−1,0) map each ψ̃klm into H̃lm, so

they indeed map H̃lm into H̃lm. This is obvious for π̃ (M−1,0) because π̃ (M−1,0)(ψ̃klm) = −�̂−1ψ̃klm

= −(k + lμ)ψ̃klm. Next, we introduce

E± = 1√
2

(M−1,D+1 ± i M0,D+1),

then one can check from Eq. (30) that [M−1,0, E±] = ±E±. Therefore

π̃(M−1,0)(π̃(E±)(ψ̃klm)) = (−k − lμ ± 1)π̃ (E±)(ψ̃klm),
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where π̃ (E±) = 1√
2
(T̂ ± i �̂D+1). It is not hard to see that π̃ (E±)(ψ̃klm) is square integrable. In

view of part (2) of Proposition 1, we conclude that π̃ (E±)(ψ̃klm) must be proportional to ψ̃(k∓1)lm.
(Here, by convention, ψ̃0lm = 0.) Therefore, operators π̃ (E±) map ψ̃klm into H̃lm. This proves that
(π̃ |sl(2), H̃lm) is a representation of sl(2).

In view of the fact that π̃ (M−1,0)(ψ̃1lm) = −(lμ + 1)ψ̃1lm 	= 0, we conclude that U (sl(2)) · ψ̃1lm

is a nontrivial unitary highest weight representation of the noncompact real Lie algebra sl0(2),
hence must be the discrete series representation with highest weight −(lμ + 1). Since U (sl(2)) ·
ψ̃1lm ⊂ H̃lm, and dim(HI ∩ U (sl(2)) · ψ̃1lm) = dim(HI ∩ H̃lm) for all I ≥ 0, we conclude that
U (sl(2)) · ψ̃1lm = H̃lm. Therefore, H̃lm is a unitary highest weight sl(2)-module with highest weight
−lμ − 1, which in fact is a unitary highest weight (sl(2), Spin(2))-module. Then H̃lm must be the
discrete series representation of Spin(2, 1) with highest weight −lμ − 1. �

To continue the discussion on representations, we prove the following proposition.

Proposition 3: (1) (π̃ |s, H̃I ) is an irreducible unitary representation of s, in fact, it is the highest
weight representation with highest weight (I + |μ|, |μ|, . . . , |μ|, μ).

(2) The unitary action of k0 on H̃ can be lifted to a unique unitary action of K under which

H̃ =
∞⊕

l=0

(
D(−lμ − 1) ⊗ Dl

)
, (49)

where Dl is the irreducible module of Spin(2n + 2) with highest weight (l + |μ|, |μ|, · · · , |μ|, μ)
and D(−lμ − 1) is the irreducible module of Spin(2) with weight −lμ − 1.

(3) H̃ is a unitary (g, K )-module.
(4) (π̃ , H̃) is irreducible; in fact, it is the unitary highest weight module of g with highest weight

(−(n + |μ|), |μ|, · · · , |μ|, μ).

Proof: (1) Recall that s is the so(2n + 2) Lie subalgebra of g generated by

{Hi , E±e j ±ek | 1 ≤ i ≤ n + 1, 1 ≤ j < k ≤ n + 1},
and s0 := s ∩ g0 is the compact real form of s. Since H0 commutes with any element in s, in view of
Remark 2, we conclude that each H̃I is invariant under π̃ (s), i.e., (π̃ |s, H̃I ) is a representation of s.

Inside s there is an so(2n + 1) Lie subalgebra r. Note that H1, ..., Hn are the generators of a
Cartan subalgebra of r, and H1, ..., Hn+1 are the generators of a Cartan subalgebra of s. Recall from
part (4) of Proposition 1,

(π̃ |r, H̃I ) =
I⊕

l=0

D̃l (50)

where D̃l is the highest weight r-module with highest weight (l + |μ|, |μ|, · · · , |μ|).
By applying the branching rule30 for (s, r), one finds that there are only two solutions to

Eq. (50): (π̃ |s, H̃I ) is the highest weight module of s with highest weight equal to either (I +
|μ|, |μ|, · · · , |μ|, μ) or (I + |μ|, |μ|, · · · , |μ|,−μ). Let ψ̃1I I ∈ H̃I be an s-highest weight vector,
which is assumed to have unit norm. Since π̃ (Hn+1) = ÂD , we have either ÂDψ̃1I I = μψ̃1I I or
ÂDψ̃1I I = −μψ̃1I I. To determine the sign, we only need to show that 〈ψ̃1I I, ADψ̃1I I〉 = μ. Note
that AD = i[�D, �D+1] = i[�D, �−1 − r ] = i[�D, �−1] − xD and ψ̃1I I is an eigenvector of �̂−1, so

〈ψ̃1I I, ÂDψ̃1I I〉 = −〈ψ̃1I I, xDψ̃1I I〉

= −
∫
RD∗

xD

∣∣ψ̃1I I(r,�)
∣∣2 d Dx . (51)

One can show that,31 up to a multiplicative constant, ψ̃1I I(r,�) is equal to

r Iμ−n+ 1
2 e−r · (sin θ )−(n−1) (1 − cos θ )

Iμ+μ

2 (1 + cos θ )
Iμ−μ

2 · Z (θ1, . . . , θD−3, φ).
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Then

〈ψ̃1I I, ÂDψ̃1I I〉 = −
∫
RD∗

xD

∣∣ψ̃1I I(r,�)
∣∣2 d D x

= −

∫ ∞

0
r2Iμ+2 e−2r dr∫ ∞

0
r2Iμ+1 e−2r dr

·

∫ π

0
cos θ (1 − cos θ )Iμ+μ (1 + cos θ )Iμ−μ sin θ dθ∫ π

0
(1 − cos θ )Iμ+μ (1 + cos θ )Iμ−μ sin θ dθ

yy = − �(2Iμ + 3)

2 · �(2Iμ + 2)
·

∫ 1

−1
x (1 − x)Iμ+μ (1 + x)Iμ−μ dx∫ 1

−1
(1 − x)Iμ+μ (1 + x)Iμ−μ dx

= −(Iμ + 1) ·

⎛⎜⎜⎜⎝
∫ 1

−1
(1 − x)Iμ+μ (1 + x)Iμ+1−μ dx∫ 1

−1
(1 − x)Iμ+μ (1 + x)Iμ−μ dx

− 1

⎞⎟⎟⎟⎠
= −(Iμ + 1) ·

(
2 · B(Iμ + 1 + μ, Iμ + 2 − μ)

B(Iμ + 1 + μ, Iμ + 1 − μ)
− 1

)

= −(Iμ + 1) ·
(

2 · �(Iμ + 2 − μ)�(2Iμ + 2)

�(Iμ + 1 − μ)�(2Iμ + 3)
− 1

)
= μ.

Part (1) is done.
(2) Since H̃l is the space of square integrable solutions of Eq. �̂−1ψ = (lμ + 1)ψ and π̃(H0)

= −�̂−1, as a k-module, H̃l = D(−lμ − 1) ⊗ Dl where Dl is the irreducible module of Spin(2n + 2)
with highest weight (l + |μ|, |μ|, · · · , |μ|, μ) and D(−lμ − 1) is the irreducible module of Spin(2)
with weight −lμ − 1. Since μ is a half integer, the irreducible unitary action of k0 on H̃l can be
promoted to a unique irreducible unitary action of K . Therefore, H̃ is a unitary K -module and has
the following decomposition into isotypic components of K :

H̃ =
∞⊕

l=0

H̃l =
∞⊕

l=0

(
D(−lμ − 1) ⊗ Dl

)
.

(3) From the definition, it is clear that the action of K on H̃ is compatible with that of g on H̃,
and its linearization agrees with the action of k0. Part (2) says that H̃ is K -finite. Therefore, H̃ is a
unitary (g, K )-module.

(4) Let v 	= 0 be a vector in H̃0 with g-weight (−(n + |μ|), |μ|, . . . , |μ|, μ). Since this weight
is the highest among all weights with a nontrivial weight vector in H̃, V := U (g) · v ⊂ H̃ is the
unitary highest weight g-module with highest weight (−(n + |μ|), |μ|, . . . , |μ|, μ). Since H̃l is
irreducible under s ⊂ g, either H̃l ⊂ V or H̃l ∩ V = 0, so in particular H̃0 ⊂ V . We claim that
H̃l ⊂ V for any l ≥ 0, consequently V = H̃ and then part (4) is done. To prove the claim, we
note that U (sl(2)) · v must be the discrete series representation of sl(2) with highest (H0-) weight
−(n + |μ|) because it is a nontrivial unitary highest weight representation of the noncompact Lie
algebra sl0(2). In view of the fact that H̃l is the eigenspace of π̃ (H0) with eigenvalue −(lμ +
1), H̃l ∩ (U (sl(2)) · v) = span{π̃ (El

−)(v)} must be one-dimensional. Then H̃l ∩ V 	= 0 because
dim(H̃l ∩ V ) ≥ dim(H̃l ∩ (U (sl(2)) · v)) = 1. �
B. Proof of Theorem 1

Viewing the twisting map τ as an equivalence of representations, we get a representation
π of g equivalent to π̃ . Then the two propositions proved in Subsection V A are true if we
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drop all “tilde” there. Thus H is the unitary highest weight (g0, K )-module with highest weight
(−(n + |μ|), |μ|, . . . , |μ|, μ). By a standard theorem of Harish-Chandra,32 we know that H is the
unitary highest weight G-module with highest weight (−(n + |μ|), |μ|, . . . , |μ|, μ) such that (π,H)
is the underlying (g0, K )-module. One can check that this highest weight module occurs at the first
reduction point of the Enright–Howe–Wallach classification diagram.33 So part (1) is done. Part (2)
of Theorem 1 is just a consequence of part (3) of Proposition 2, and part (3) of Theorem 1 is just a
consequence of part (2) of Proposition 3.

APPENDIX: GEOMETRICALLY TRANSPARENT DESCRIPTION

The purpose of this appendix is to give a geometrically transparent description of the unitary
highest weight module of Spin(2, 2n + 2) with highest weight (−(n + |μ|), |μ|, · · · , |μ|, μ).

As usual, we assume n ≥ 1 is an integer and let S2μ be the pullback bundle under the natural
retraction R2n+1

∗ → S2n of the vector bundle Spin(2n + 1) ×Spin(2n) s2μ → S2n with the natural
Spin(2n + 1)-invariant connection. Let d D x be the Lebesgue measure on R2n+1. As is standard in
geometry, we use L2(S2μ) to denote the Hilbert space of square integrable (with respect to d D x)
sections ofS2μ. We have shown that H̃ (μ) = L2(S2μ), therefore,

(
π̃ , L2(S2μ)

)
is the unitary highest

weight module of Spin(2, 2n + 2) with highest weight (−(n + |μ|), |μ|, · · · , |μ|, μ). To describe
the infinitesimal action of Spin(2, 2n + 2) on C∞(S2μ), it suffices to describe how Mα,0, MD+1,0

and M−1,0 act as differential operators. It is easy to see that Mα,0, MD+1,0 and M−1,0 are equal to
i
√

r∇α

√
r , 1

2

(√
r�μ

√
r + r − c

r

)
and 1

2

(√
r�μ

√
r − r − c

r

)
, respectively. Here �μ is the Laplace

operator twisted by S2μ. For example, for ψ ∈ C∞(S2μ), we have

(Mα,0 · ψ)(r,�) = i
√

r∇α

(√
rψ(r,�)

)
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