research

Generalized MICZ-Kepler Problems and Unitary Highest Weight Modules

Abstract

For each integer n1n\ge 1, we demonstrate that a (2n+1)(2n+1)-dimensional generalized MICZ-Kepler problem has an \mr{Spin}(2, 2n+2) dynamical symmetry which extends the manifest \mr{Spin}(2n+1) symmetry. The Hilbert space of bound states is shown to form a unitary highest weight \mr{Spin}(2, 2n+2)-module which occurs at the first reduction point in the Enright-Howe-Wallach classification diagram for the unitary highest weight modules. As a byproduct, we get a simple geometric realization for such a unitary highest weight \mr{Spin}(2, 2n+2)-module.Comment: 27 pages, Refs. update

    Similar works