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Abstract 1 

The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both 2 

mycelial nutrition and senescence of the fruiting body. We report on the construction 3 

of an SPR promoter::GFP fusion cassette (pGreen_hph1_SPR_GFP) for the 4 

investigation of temporal and developmental expression of SPR1 in 5 

homobasidiomycetes, and to determine how expression is linked to physiological and 6 

environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP 7 

transformants on media rich in ammonia or containing different nitrogen sources, 8 

demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus 9 

fruiting bodies, GFP activity was localised to the stipe of postharvest senescing 10 

sporophores. pGreen_hph1_SPR_GFP was also transformed into the model 11 

basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was 12 

profiled during liquid culture and fruiting body development. Maximum activity was 13 

observed in the mature cap, while activity dropped during autolysis. Analysis of the 14 

C. cinerea genome revealed 7 genes showing significant homology to the A. bisporus 15 

SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine and serine 16 

residues common to serine proteinases. Analysis of the promoter regions revealed at 17 

least one CreA and several AreA regulatory motifs in all sequences. Fruiting was 18 

induced in C. cinerea dikaryons and fluorescence determined in different 19 

developmental stages. GFP expression was observed throughout the life cycle, 20 

demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting 21 

body development. Serine proteinase expression (GFP fluorescence) was most 22 

concentrated during development of young tissue, which may be indicative of high 23 

protein turnover during cell differentiation. 24 

 25 
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1. Introduction 1 

Agaricus bisporus, the cultivated mushroom has economic and biotechnological 2 

significance. It is the most extensively cultivated mushroom worldwide, with an 3 

annual production in the region of 5 million tonnes (33) and is a major protected crop 4 

in the UK accounting for 10% of such horticultural production (20). In addition to its 5 

value as a food crop there is considerable interest in A. bisporus as a host for 6 

molecular pharming of heterologous proteins (21, 51, 58, 62), and it also appears to 7 

produce a number of compounds of potential biomedical/nutraceutical importance 8 

(13). Application of biotechnology to A. bisporus has greatly increased due to the 9 

development of a transformation system (14, 26) and recently Burns et al., (2006) 10 

developed an A. bisporus 'molecular toolkit' which tested different promoters for 11 

efficient gene expression. Despite these recent advances, developmental studies in 12 

Agaricus have been hampered due to the time and containment issues that exist when 13 

studying a genetically modified strain.  14 

The ink-cap mushroom, Coprinopsis cinerea (formally Coprinus cinereus), is a well-15 

studied homobasidiomycete (12, 43, 47) that forms an excellent model system for 16 

studies of gene expression at several levels of differentiation, particularly mushroom 17 

development and meiotic processes (46, 59).  It has been used as an object for studies 18 

of development (32) mainly because of its relatively short life cycle, which can be 19 

completed in the laboratory within 2 weeks (44).  In addition, genetic studies and 20 

experimental manipulation of all phases of its life cycle are simple and relatively 21 

straightforward (63). The C. cinerea genome sequence was released in 2003 22 

(http://www.broad.mit.edu) and recently gene silencing has been demonstrated in the 23 

basidiomycete (24, 47). We have exploited these characteristics of C. cinerea for the 24 

investigation of a serine proteinase from Agaricus bisporus. 25 



 5 

A serine proteinase (SPR1) has been purified from senescent sporophore tissue of A. 1 

bisporus, which has a molecular mass of 27 kDa and an isoelectric point of 9.0 (11). 2 

The protease has a broad pH optimum, 6.5-11.5, and a narrow substrate specificity, 3 

requiring both a hydrophobic amino acid in the P1 position and a minimum peptide 4 

chain length (11). The most active proteolysis of A. bisporus culture filtrate was 5 

observed with Suc-Ala-Ala-Pro-Phe-pNA at neutral pH (10). Serine proteinase was 6 

found to be the major proteinase produced by A. bisporus in sporophores during 7 

senescence (9), and extracellular to mycelium in colonized compost where nitrogen is 8 

largely in the form of protein suggesting a nutritional role for this enzyme (10). The 9 

serine proteinase extracellular to mycelium was produced to a greater degree in 10 

response to protein associated with humic substances than other pure proteins, 11 

suggesting factors additional to the protein are involved in its induction. The cDNA 12 

for this proteinase has been cloned and sequenced (accession no Y13805), which 13 

revealed that this serine proteinase (SPR) belongs to the 'proteinase K family' (31). 14 

The SPR1 gene expression was not detected in freshly harvested mushrooms, while 15 

increased transcript levels were observed 1-3 days post harvest. Expression of SPR1 16 

was strongest in post harvest stipe tissue (31) which correlated well with the increase 17 

in enzyme activity and protein level detected in senescent stipe (9). The relatively 18 

high transcriptional and translational levels of SPR in the stipe demonstrate that the 19 

enzyme is important during the metabolism of senescing mushrooms.  20 

This paper reports on the construction of a promoter::GFP fusion cassette for the 21 

investigation of the temporal and developmental expression of SPR1 in A. bisporus 22 

and C. cinerea and to characterise expression in response to physiological and 23 

environmental stimuli. This paper further investigates the utility of C. cinereus as a 24 

model system for basidiomycete gene expression and fruiting body production, as 25 
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development of a model species for basidiomycetes research is vital for future 1 

progress. 2 

2. Materials and methods 3 

2.1 Strains and culture maintenance 4 

Escherichia coli strain DH5α was the host strain for recombinant plasmids. 5 

Agrobacterium tumefaciens AGL1 (34) was used for A. bisporus transformations and 6 

cultured as previously described (17, 26). The A. bisporus commercial strain A15 (18) 7 

was used for transformations. Mycelia were routinely maintained at 25°C on MPA 8 

(35) agar plates and supplemented with 25µgml
-1

 hygromycinB  to select for 9 

transformants. A tryptophan auxotroph, LT2 (A6B6, trp1.1;1.6) (4) was used for C. 10 

cinerea transformations. C. cinerea strains AT8 (A43B43, trp-3, ade-8) and 11 

AmutBmut (A43mutB43mut, pab1) (41, 56) were used for fruiting studies. C. cinerea 12 

mycelia were routinely maintained at 37°C on YMG agar (4) supplemented when 13 

appropriate with 100µgmL
-1

 L-tryptophan.  14 

 15 

2.2 Construct design  16 

An 877bp A. bisporus SPR putative promoter region (5'UTR) was amplified from a 17 

cosmid clone template using primers spr1-fwd 18 

(TCCCCGCGGCGGGCTCAGAAGGTTTCTAT) and spr1(rev)m 19 

(AAATCCATGGTCGGTGAAGAGATC) that respectively introduced 5' SacII and 3' 20 

NcoI restriction sites. The resulting amplicon was cloned using pGEM-Teasy 21 

(Promega Corp.) and SPR1 promoter integrity confirmed by dsDNA sequencing of 22 

recombinants. The SPR1 promoter was cloned into a pBluescriptII based GFP 23 

expression construct (pBlue-SPR-GFP) following removal of the A. bisporus GPDII 24 

promoter (SacII-NcoI restriction) from an intron-GFP expression vector p004iGM (6). 25 
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The 1884bp SPR::GFP expression unit was excised by SacI-KpnI restriction and 1 

ligated into the ClaI-KpnI restricted binary pGreen_hph1 (18) by addition of a ClaI-2 

SacI oligolinker (CGAGCT) to yield pGreen_hph1_SPR_GFP. 3 

 4 

2.3 Fungal transformations 5 

Plasmid DNA for fungal transformation was prepared using QIAgen Midi Prep Kits. 6 

C. cinerea protoplast co-transformations were performed as previously described (4, 7 

6, 22, 24) using ca. 1µg of pCc1001 (trp1) (54) with 5µg of plasmid 8 

pGreen_hph1_SPR_GFP. Trp+ transformants were maintained on Coprinus 9 

regeneration agar (6, 16, 24). Putative transformants of C. cinerea were cultured as 10 

described above and genomic DNA extracted as previously described (36). PCR 11 

screening of C. cinerea transformants was performed using Reddymix components 12 

(Abgene) with a general thermal cycling program of 95°C for 3 min, (95°C for 30 sec, 13 

50°C for 1min, 72°C for 30 sec,) 30 cycles, 72°C for 10 min. 14 

A. bisporus was transformed using Agrobacterium tumefaciens mediated transfection 15 

of gill tissue as previously described (6, 7, 14, 35, 42). Transformants of A. bisporus 16 

were identified using previously published methods (18, 35) and transcription of both 17 

hph and GFP transgenes confirmed using rtPCR and/or quantitative rtPCR (24). A. 18 

bisporus transformants for fruiting were selected from a large sample set by 19 

fluorometric quantification of GFP activity in mycelia (24) following induction with 20 

humic fraction (10). 21 

 22 

2.4 Fruiting studies 23 

Dikaryons of C. cinerea were produced on YMGT plates by placing mycelial blocks 24 

of AT8 and LT2 trp
+
 transformants 5mm apart at 37°C; dikaryotization was 25 
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confirmed by the presence of clamp cells. For growth and induction of fruiting bodies, 1 

dikaryons on YMGT plates were incubated at 12 hr light/12 hr dark, 25°C, 90% 2 

humidity under standard fruiting conditions (22, 37). C. cinerea strain AmutBmut was 3 

selected as a control strain for fruiting studies as it exhibits clamp formation and fruit 4 

body development like a dikaryon and produces uninucleate oidia like a monokaryon 5 

(56). GFP expression in fruiting bodies was examined using a Leica MZFL111 6 

microscope with SPOT 2.2.1 (Diagnostic Instruments inc.) imaging software.  7 

A. bisporus sporophores were produced in small-scale compost cultures at the 8 

University of Warwick's transgenic mushroom containment facility, harvested and 9 

stored as previously described (18). GFP activity was measured in detached 10 

mushrooms, 3-days post-harvest, using a portable GFP meter (ADC BioScientific 11 

Ltd., UK; excitation 450nm/ emission 530nm/ gain setting 55). Metered readings were 12 

recorded for both cap and stipe tissues of whole mushrooms and the freshly cut face 13 

of longitudinally bisected sporophores. A minimum of three replicate readings was 14 

taken for each sample tissue from two replicate sporophores. Sectioned mushrooms 15 

were also viewed using a blue LED floodlight (Inova X5
TM

, Emissive Energy, RI) 16 

with appropriate blue/yellow filter sets (57) and photographed using a Nikon Coolpix 17 

990.  18 

 19 

2.5 Proteinase assays 20 

A proteinase plate assay was carried out by inoculating C. cinerea LT2 onto 21 

ammonium free regeneration agar (RA) plates containing 0.5% (w/v) skimmed milk 22 

powder. To assess proteinase activity, colony size was measured, as well as the 23 

clearing zone around each colony, produced by degradation of the milk layer by 24 
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extracellular proteinase activity. LT2 was inoculated onto standard RA media as a 1 

control. Five replicate plates were measured per assay. 2 

Expression of serine proteinase activity in liquid culture was determined by 3 

inoculating LT2 into ammonium free RA containing 0.5% (w/v) milk solution and 4 

into standard RA. Cultures were grown for 264 h and samples (8 ml) were aseptically 5 

removed every 24 h and assayed. Serine proteinase activity was measured in fruiting 6 

body developmental stages by homogenising fungal tissue in 50mM Tris buffer, pH 7 

8.0 and
 
centrifuging at 10,000g to remove particulate material. 8 

Serine proteinase activity was assayed spectrophometrically by absorbance at 405nm 9 

following the release of p-nitroaniline from the synthetic peptide Suc-Ala-Ala-Pro-10 

Phe-pNA (0.15mM) in 50mM Tris buffer, pH 8.0.  Hydrolysis was performed for 30 11 

min at 37
o
C. Inhibition of serine proteinase was performed by pre-incubation of 0.1M 12 

PMSF (Fluka) inhibitor with the enzyme at 37°C for 30 min. Soluble protein 13 

concentrations were measured by the dye-binding method of Bradford (5). Bovine 14 

serum albumin was used as a standard. Biochemical assays were performed in 15 

triplicate.  16 

 17 

2.6 Sequence analysis 18 

Sequences were analysed by BLAST (NCBI) (1) and aligned using ClustalW (25).  19 

The sequence manipulation suite (55) performed molecular weight and isoelectric 20 

point prediction. Prosite was used to identify motifs and signature sequences in the 21 

deduced protein sequences (3) and signal sequences were identified using SignalP 22 

(48). Structural classification of sequences was based on SCOP (45). Transcription 23 

factor binding sites were predicted using MOTIF search on Genome Net 24 

(http://motif.genome.jp/). 25 
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 1 

3. Results 2 

3.1 Analysis of A. bisporus pGreen_hph1_SPR_GFP transformants 3 

To investigate the temporal and spatial expression of the A. bisporus SPR1 gene, a 4 

promoter::GFP fusion cassette was constructed. This expression vector was 5 

engineered to contain a 5′ intron, which has previously been shown to be necessary 6 

for GFP expression in A. bisporus and C. cinerea (6). Plasmid 7 

pGreen_hph1_SPR_GFP was transformed into A. bisporus via A. tumefaciens and 8 

transformants were recovered on hygromycin selection. Nine transformants were 9 

selected for further analysis. The presence of the intact expression cassette, 10 

pGreen_hph1_SPR_GFP, was confirmed via PCR. Primers SPR1Fwd (5′-11 

CCGCGCAACATATGTATGTGAGAG-3′) and GFPrev (5′-12 

GTGGCGGATCTTGAAGTTCACCTTG-3′), which bind 256bp downstream from 13 

the 5′ end of the SPR1 promoter and 234bp upstream from the 3′ end of the GFP gene 14 

respectively, resulted in a 1226bp PCR product. Primers GFPFwd (5′-15 

GGCGTGCAGTGCTTCAGCCGC-3′) and TrpCRev (5′-16 

GCACTCTTTGCTGCTTGGAC-3′) which bind 222bp downstream from the 5′ end 17 

of the GFP gene and 146bp upstream from the 3′ end of the TrpC terminator resulted 18 

in a 665bp PCR product. Positive amplification of both fragments confirmed the 19 

presence of the intact expression cassette. A. bisporus pGreen_hph1_SPR_GFP 20 

transformants, wild type A. bisporus A15, and an A. bisporus strain expressing the 21 

plasmid pGR4-4GiGM3’ (G26) which contains GFP under the A. bisporus GPD II 22 

promoter (6), were inoculated onto a range of media to investigate if changes in 23 

nutrient availability would alter the expression of the proteinase which is know to be 24 

involved in nutrient acquisition. GFP expression was monitored on media rich in 25 
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ammonia (YMG, MMP, and regeneration agar (RA)), potato dextrose agar (PDA), 1 

and ammonia free regeneration agar containing one of the following sole nitrogen 2 

sources; 0.094% (w/v) humic fraction, 0.084% (w/v) glutamic acid (GA), or 0.5% 3 

(w/v) skimmed milk power. GFP expression was observed in the 4 

pGreen_hph1_SPR_GFP transformants grown on humic fraction, milk, GA and PDA 5 

media, while no GFP expression was observed on YMG, MMP and RA (Table 1). 6 

Fig. 1A shows expression of GFP in an A. bisporus SPR::GFP transformant (TP17) 7 

on ammonia free regeneration agar containing 0.094% humic fraction, and its 8 

repression on standard regeneration media. As expected the GPD::GFP control 9 

transformant (G26) exhibited strong GFP expression on all media, whilst GFP 10 

fluorescence was not observed on any media with the wild type strain (Table 1).   11 

 12 

3.2 Monitoring of SPR1 expression in A. bisporus sporophore development 13 

Fruiting was induced in A. bisporus transformants and GFP expression was detected 14 

using blue LED illumination of bisected mushrooms (Fig 1B). Transformants for 15 

fruiting were selected from a large sample set by fluorometric quantification of GFP 16 

activity in mycelia (23) following induction with humic fraction (10). TP196 was 17 

selected as a typical phenotypic representative of transformants, which also exhibited 18 

excellent culture and fruiting capabilities. GFP expression was clearly observed in 19 

both the cap and stipe tissues of freshly harvested (day 0) A. bisporus G26 fruiting 20 

bodies, expressing GFP under the control of the GPD promoter (Fig. 1B: Panel A). In 21 

senescing mushrooms (3d post harvest) no GFP expression was observed in a 22 

hygromycin resistant (control) transformant of A15hph (no GFP cassette, Fig. 1B: 23 

Panel B: leftmost mushroom), while GFP expression was clearly detected in the stipe 24 

tissue of SPR::GFP transformant TP196 (Fig. 1B: Panel B: rightmost mushroom). 25 
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Metered readings (relative fluorescence units (RFUs)) for cap and stipe tissues of 1 

whole and longitudinally bisected mushrooms of TP196 (SPR::GFP), G26 2 

(GPD::GFP) and A15hph (no GFP cassette) were recorded 3 days post harvest (Fig. 3 

2). GFP activity was substantially elevated in the stipes of senescing mushrooms for 4 

the SPR::GFP transformant TP196. The tissue (stipe) specific expression of GFP in 5 

TP196 is consistent with earlier histochemical observations of SPR activity in 6 

senescing mushrooms (9). RFUs recorded for G26 represent background fluorescence 7 

of the fruiting body, while A15hph exhibits a slight increase in RFUs compared to 8 

G26 due to autofluorescence.  9 

 10 

3.3 Expression profiles of serine proteinases in C. cinerea LT2 11 

Endogenous proteinase activity was assessed by inoculating LT2 onto ammonium free 12 

regeneration agar (RA) with and without a 0.5% (w/v) milk solution. Clearing zones, 13 

indicative of proteinase activity, were only produced on media containing the milk 14 

overlay (Fig. 3A). A proteinase expression profile was developed for LT2 grown in 15 

broth by measuring the hydrolysis of the synthetic peptide Suc-Ala-Ala-Pro-Phe-16 

pNA.  Proteinase activity was observed in LT2 cultures grown in ammonium free RA 17 

containing 0.5% (w/v) milk solution after 120 h (0.0259 AU/mL) and continued to 18 

increase until 240 h (1.283 AU/mL) (Fig. 3B). A small decrease in activity was 19 

observed at 264 h but increased again at 288 h.  Pre-incubation of the crude enzyme 20 

extracts with the serine proteinase inhibitor PMSF resulted in a large decrease in 21 

activity (from 1.283 AU/mL to 0.17 AU/mL at 240 h), thus confirming that the 22 

majority of proteinase activity detected was the serine mechanistic class. Little or no 23 

proteinase activity was observed in LT2 cultures grown in standard RA media, which 24 

is rich in ammonia (Fig. 3B).  25 
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Serine proteinase activity was measured during the primordium, karyogamy, meiosis, 1 

immature, mature and autolysis stages of fruiting body development (Fig. 3C). 2 

Activity increased slowly from the primordium (1.29 units/g) to the meiosis stage 3 

(1.69 units/g) with a slight dip at immature (1.52 units/g) followed by a large increase 4 

in activity during the mature development stage (6.32 units/g). Maximum activity was 5 

detected in the mature cap (6.32 units/g) followed by a decrease in activity during 6 

autolysis (3.45 units/g). Similarly, pre-incubation of the crude enzyme extracts with 7 

the inhibitor PMSF resulted in a large decrease in activity (from 6.32 units/g to 0.34 8 

units/g in the mature cap), demonstrating that the class of proteinase activity detected 9 

was serine proteinase (Fig. 3C). 10 

 11 

3.4 Identification and sequence analysis of homobasidiomycete serine proteinases 12 

Following confirmation of endogenous serine proteinase activity in C. cinerea, 13 

identification of the encoding genes was undertaken using the published C. cinerea 14 

genome sequence. Two A. bisporus serine proteinases have been previously identified 15 

(SPR1, SPR2) and their sequence deposited in public databases under accession 16 

numbers Y13805 and AJ344211 respectively (30, 31). Predicted molecular weights 17 

(Table 2), for full-length SPR1 and SPR2 are considerably larger than the ca. 27kDA 18 

experimental estimates from SDS-PAGE, cDNA and N-terminal amino acid 19 

sequencing.  Mature proteins for SPR1 (286 aa, 28.29kDa) and SPR2 (275 aa, 20 

27.70kDa) are much closer to the 27kDA estimate previously observed (11, 31). Blast 21 

analysis (1) of the A. bisporus SPR1 and SPR2 genes against the C. cinerea database 22 

revealed 7 genes (04562.1, 10592.1, 10615.1, 07792.1, 10606.1, 0.3122.1 & 04470.1) 23 

showing significant homology to the serine proteinases. ClustalW alignments of these 24 

C. cinerea genes with the A. bisporus SPR1 revealed amino acid sequence identity 25 
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values ranging between 44% and 61% while homology of the SPR2 with the C. 1 

cinerea genes ranged between 42% and 55% (Table 3). SPR1 and SPR2 have an 2 

amino acid identity value of 75% while the C. cinerea genes have homology ranging 3 

between 31% and 77% (Table 3).  4 

Three motifs were identified within the C. cinerea genes that are common to other 5 

serine proteinases; the aspartic acid residue (consensus: [STAIV]-X-[LIVMF]-6 

[LIVM]-D-[DSTA]-G-[LIVMFC]-X(2,3)-[DNH], the histidine residue (consensus: H-7 

G-[STM]-X-[VIC]-[STAGC]-[GS]-X-[LIVMA]-[STAGCLV]-[SAGM]) and the 8 

serine residue (consensus: G-T-S-X-[SA]-X-P-X(2)-[STAVC]-[AG]) (31). These 9 

residues were conserved between the C. cinerea genes and the A. bisporus SPR1 and 10 

SPR2, with the exception of the C. cinerea gene 10606.1 that lacked the serine 11 

residue. This suggests that the C. cinerea genes are serine proteinases and they appear 12 

to belong to the subtilisin family. 13 

The probable C. cinerea serine proteinase genes ranged between 346 and 500 amino 14 

acids in length (Table 2), and all contained introns. Each intron began with GT and 15 

ended with AG, which is a common feature of fungal introns and has been observed 16 

in the serine proteinase genes from Acremonium chrysogenum (28), Lecanicillium 17 

psalliotae (60) and Arthrobotrys conoides (61). The number of introns varied between 18 

2 and 14 depending on the gene (Table 2), and some conservation of intron position 19 

was observed between the C. cinerea genes and SPR2.  20 

The theoretical molecular weight and isoelectric points for the C. cinerea SPR genes 21 

range between 35kDa and 53kDa and 5.83 and 9.97 respectively (Table 2), while the 22 

theoretical molecular mass and isoelectric points for SPR1and SPR2 are 39.39 kDa 23 

and 5.93 and 38.85 kDa and 5.53 respectively (Table 2). A predicted signal peptide 24 

was observed in the C. cinerea and A. bisporus serine proteinases, with cleavage 25 
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occurring either between amino acids 19 and 20, 20 and 21 or 21 and 22, suggesting 1 

that these enzymes are secreted. Using the highest homology sequences, the predicted 2 

secondary structure of these genes is composed of between 20-30% helices, 16-35% 3 

strands and 42-61% loops (Table 2) and analysis of the degree of protein globularity 4 

suggests that these enzymes exist as compact (globular) domains. 5 

One kb of sequence upstream from the ATG start codon of each gene was analysed 6 

for the presence of regulatory motifs. At least one CreA and several Nit2/AreA 7 

regulatory elements were identified in the promoter regions of the C. cinerea and A. 8 

bisporus genes (Table 2). No other regions of homology were detected between the 9 

promoters.  10 

 11 

3.5 Analysis of C. cinerea pGreen_hph1_SPR_GFP transformants 12 

From a preliminary screen of one hundred Trp+ co-transformants on RA media (rich 13 

in ammonia), and on ammonia free regeneration agar containing 0.094% (w/v) humic 14 

fraction as the sole nitrogen source, 32% of transformants were found to express GFP 15 

on humic fraction, which correlates well with the reported rate of co-transformation 16 

(30-49% (6)). However, GFP expression was not observed on RA media. Four GFP+ 17 

transformants, non-transformed LT2, and a C. cinerea strain (PG78Gr) expressing 18 

GFP under the regulation of the A. bisporus GPDII promoter (24), were selected for 19 

further studies. GFP expression was monitored on media rich in ammonia (YMG, and 20 

regeneration agar (RA)), potato dextrose agar (PDA), and ammonia free regeneration 21 

agar containing either 0.094% (w/v) humic fraction, 0.084% (w/v) glutamic acid 22 

(GA), or 0.5% (w/v) milk as the sole nitrogen source. LT2 exhibited no fluorescence 23 

on any media while PG78Gr expressed GFP on all the media. GFP fluorescence was 24 

observed in transformants grown on humic fraction, milk, GA and potato dextrose 25 
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media while no GFP fluorescence was observed on RA media (Table 1). The only 1 

transformant to exhibit fluorescence on YMG media was T47.  2 

C. cinerea transformants were mated with AT8 and the dikaryons inoculated onto a 3 

range of media and screened for GFP expression. Similar expression profiles were 4 

observed for both the monokaryons and dikaryons (Table 1). Fig. 4A shows C. 5 

cinerea transformant T47 monokaryon and dikaryon expression of GFP on ammonia 6 

free regeneration agar containing 0.094% (w/v) humic fraction, and repression of GFP 7 

on standard regeneration media. 8 

 9 

3.6 Monitoring of SPR1 expression in C. cinerea fruiting body development 10 

Fruiting was induced in the C. cinerea dikaryon strains and the control strain 11 

AmutBmut. Different developmental stages of the fruiting body were examined 12 

microscopically for fluorescence. Low levels of fluorescence were observed in the 13 

hyphal knot (Fig 4B: Panel A). Fluorescence was also observed in the primordium 14 

stage but was not localised (Fig 4B: Panel B). A similar observation was made for 15 

karogamy stage but GFP localisation began to occur at the edge of the forming gill 16 

tissue (Fig 4B: Panel C). GFP appeared more localised at the forming gill tissue 17 

during meiosis (Fig 4B: Panel D), while at the immature stage GFP was observed 18 

high up in the stipe close to the cap (Fig 4B: Panel E). In mature sporophores, 19 

fluorescence was observed in the cap but was most concentrated at the junction of the 20 

stipe and cap (Fig 4B: Panel F), while fluorescence was reduced in the stipe (Fig 4B: 21 

Panel G). During autolysis fluorescence was greatly reduced in the cap (Fig 4B: Panel 22 

H) but was concentrated in the stipe tissue (Fig 4B: Panel I). In the control strain 23 

AmutBmut some autofluorescence was observed throughout the different 24 
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developmental stages. Fig 4C depicts a schematic of GFP fluorescence under the 1 

control of the A. bisporus SPR1 promoter through out the C. cinerea life cycle. 2 

 3 

4. Discussion 4 

A. bisporus SPR1 has previously been shown to be significant in both mycelial 5 

nutrition and senescence of the mushroom fruit body (8-10). This study used an 6 

SPR::GFP fusion construct to investigate temporal and developmental expression of 7 

SPR1 in A. bisporus and a heterologous host C. cinerea in response to physiological 8 

and environmental stimuli. Developmental studies in A. bisporus are still hindered due 9 

to the time and containment issues that exist when studying a genetically modified 10 

strain. C. cinerea provides a model system for the studies of gene expression 11 

throughout mushroom development (47, 59) and heterologous expression of the A. 12 

bisporus SPR1 promoter fusion is a further demonstration of the inkcap host utility as 13 

a model species. 14 

GFP has been widely used as a reporter molecule or as a fluorescent tag for fusion 15 

proteins (53) and is now a valuable tool in the molecular analysis of filamentous fungi 16 

(38). The use of GFP in ascomycete fungi has been widely reported (2, 27, 49), and 17 

recently expression in homobasidiomycetes has also been achieved  (6, 39, 40).  18 

The aim of this study was to carry out a comparative molecular analysis of serine 19 

proteases in both C. cinereus and A. bisporus. To this end, identification of C. 20 

cinereus SPR genomic sequences was performed to establish the homology between 21 

Agaricus and Coprinus SPR genes. Bioinformatics was employed to help predict if the 22 

genes would be regulated in a similar fashion, thus providing evidence for the 23 

suitability of C. cinereus as a heterologous host for A. bisporus SPR1. Blast analysis 24 

of the A. bisporus SPR1 cDNA and SPR2 genomic sequence against the C. cinerea 25 
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database revealed 7 genes showing significant homology. Conservation of the aspartic 1 

acid, histidine and serine residues within the genes suggested that they are serine 2 

proteinases belonging to the subtilisin family. However, lack of a serine residue at the 3 

active site in 10606.1 suggests that some of these are 'pseudogenes' that would be 4 

unable to code for active enzymes. Signal peptide analyses were indicative of 5 

extracellular activity and protein globularity infers that the enzymes would exist as 6 

compact globular domains. Sequencing of the A. bisporus genome is currently 7 

underway (http://www2.warwick.ac.uk/fac/sci/whri/research/agaricusgenome/) which 8 

may reveal further SPR homologues.  9 

All the C. cinerea genes contained introns with numbers varying between 2 and 14; 10 

only two genes had less than 10 introns, six of the seven analysed contained between 11 

11-14 introns. Short exons and high intron density in basidiomycetes and the 12 

comparatively poor conservation of intron splice sequences compared with other 13 

fungi can result in some inaccuracies when using intron predictive software. This may 14 

account for the low number of introns identified in CC1G_10615.1 and 15 

CC1G_04470.1.   16 

In A. bisporus, two serine proteinases (SPR1 and SPR2) were isolated from the same 17 

cosmid clone, within 30kb of each other (30). Similarly, three C. cinerea serine 18 

proteinases (CC1G_10592.1, CC1G_10606.1 and CC1G_10615.1) lay within 50kb of 19 

each other on the genome suggesting either local duplication or a common ancestor. 20 

Conservation of intron positions observed in these genes is indicative of local 21 

duplications.  22 

Endogenous protease activity was investigated in C. cinereus. A preliminarily plate 23 

based assay resulted in a clearing zone around the fungal colonies thus confirming the 24 

presence of proteases in the basidiomycete. As previously demonstrated in A. bisporus 25 
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(10), little or no serine proteinase activity was detected in C. cinerea cultures grown 1 

in ammonia rich media. Activity was observed in cultures grown on ammonia free RA 2 

containing milk as the sole nitrogen source after 120 h and continued to increase until 3 

240 h with a slight decrease at 264 h before increasing again at 288 h which may be 4 

indicative of the onset of autolysis. 5 

Expression of SPR1 in response to physiological and environmental stimuli was 6 

examined by inoculating the A. bisporus and C. cinerea pGreen_hph1_SPR_GFP 7 

transformants onto a range of media to investigate if changes in nutrient availability 8 

would alter the expression of the proteinase. At least one CreA and several Nit2/AreA 9 

transcription factor-binding sites were identified in both the A. bisporus and C. 10 

cinereus SPR promoter sequences, signifying regulation by factors such as carbon and 11 

nitrogen sources. Conservation of these sites was not observed across the promoters. 12 

Experimental evidence for the regulation of serine proteinases in response to nitrogen 13 

sources is provided from C. cinerea biochemical profiles in broth culture; serine 14 

proteinase was not detected on ammonia rich RA media but was observed on 15 

ammonia free RA supplemented with milk. GFP expression was observed in A. 16 

bisporus and C. cinereus transformants grown on PDB and on ammonia free RA 17 

containing humic fraction, milk, or glutamate as the sole nitrogen source. GFP 18 

expression was not observed on YMG, MMP or regeneration media (rich in 19 

ammonium), with the exception of C. cinereus transformant TP47. GFP expression 20 

was observed in TP47 grown on YMG media, which may result from multiple 21 

insertion events, however this expression profile was atypical of the population of C. 22 

cinereus transformants analysed. Expression profiles were similar for both 23 

monokaryons and dikaryons. Collectively these results suggest that both C. cinerea 24 

and A. bisporus produce serine proteinases in response to available nitrogen.  25 
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 1 

Developmental regulation of serine proteinase expression was investigated. Serine 2 

proteinase activity has previously been reported during fruiting body development of 3 

A. bisporus (9). From stages 2 to 6 of development (23), activity was relatively low 4 

and cap and stipe activities were similar. A. bisporus developmental stages 2-6 5 

roughly correspond to the primordium, karyogamy, meiosis, immature and mature 6 

stages of C. cinereus development. In our SPR biochemical assays, activity was 7 

relatively low in the first four stages of C. cinerea development but increased rapidly 8 

at the mature stage. GFP expression was ubiquitous in the primordium stage, which 9 

may be the result of a higher density of cytoplasm in the developing primordium. GFP 10 

expression was observed throughout the karogamy and meiosis stages though 11 

localization of fluorescence began to occur at the edge of the forming gill tissue at the 12 

karyogamy stage and became more pronounced at the meiosis stage. C. cinerea is 13 

described as having a rupthymenial mode of hymenophore development, where the 14 

gill is envisaged as widening towards the periphery of the cap as a differentiating 15 

front moves into, and differentiates from, the basidiocarp (50). As the widest part of 16 

the gills is those at the cap margin, the differentiating front is also moving upwards 17 

towards the apex of the cap (52). GFP fluorescence was most concentrated at the base 18 

of the gills in the karogamy stage and moved upwards towards the apex of the cap in 19 

meiosis suggesting that SPR1 promoter activity was enhanced during the development 20 

of young tissue, which may be indicative of high protein turnover during cell 21 

differentiation. This could also result from autolysis of connective tissue as the gills 22 

begin to separate from the stipe i.e. creating an abscission zone. At the immature stage 23 

GFP was observed high up in the stipe close to the cap. Studies of C. cinerea stipe 24 

elongation have revealed that it is variable along its length and that elongation is 25 
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greatest at the mid-upper portion (the stipe that is enclosed by the developing cap); the 1 

apex and base of the stipe shows little elongation (15, 29). The rapid increase in 2 

length is chiefly due to cellular elongation (29) but divisions also contribute, with 3 

cells doubling in number and increasing six to eight fold in length (19). The 4 

fluorescence observed in the mid-upper stipe demonstrates that the SPR1 promoter is 5 

activity upregulated during elongation, and is likely to support the elongating stipe by 6 

providing free amino acids via protein degradation. Highest activity was recorded in 7 

the mature cap with slightly less activity in the mature stipe, contrasting to the levels 8 

recorded for A. bisporus. In the mature fruiting body GFP fluorescence was observed 9 

in the cap but was most concentrated at junction of the stipe and cap. This may result 10 

from a high density of cells where younger tissue is still developing resulting in 11 

elevated protein turnover. With A. bisporus developmental stage 7, a large increase in 12 

activity in the stipe and a small increase in the cap occurs (9), and further increases 13 

are observed as stage 7 mushrooms progress to senescence. During C. cinerea 14 

autolysis serine proteinase activity decreased and fluorescence was greatly reduced in 15 

the cap but was highly concentrated in stipe tissue. Accumulation of serine proteinase 16 

in the stipe during autolysis would suggest a role in the export of nutrients from the 17 

stipe to the cap tissue during senescence. Similarly in A. bisporus sporophores, 18 

highest SPR::GFP activity was observed in senescing stipe tissues, suggesting that the 19 

stipe may act as an 'active source' during the export of nutrients to reproductive spore-20 

bearing tissues. 21 

 22 

The results reported here confirm that the A. bisporus (SPR1) promoter is able to 23 

regulate mycelial serine proteinase production in response to specific nitrogen sources 24 

and have demonstrated tissue specific (stipe localised) expression in detached 25 



 22 

sporophores. Use of the SPR::GFP fusion construct, coupled with genome data-1 

mining, suggests that serine proteinases also play an integral part in the development 2 

of C. cinerea sporophores. The approaches developed in this study should underpin 3 

further promoter analysis in these homobasidiomycete mushrooms and may permit 4 

characterisation of promoter elements that regulate differential expression and 5 

nutritional regulation of serine proteinases. Furthermore C. cinereus has been 6 

validated as a potential model for expression and regulation studies of A. bisporus 7 

genes. 8 

 9 

 10 
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Table 1. Evaluation of GFP fluorescence in A. bisporus and C. cinerea monokaryon 1 

and dikaryon pGreen_hph1_SPR_GFP transformants on a range of different media. 2 

Control strains included non transformed A. bisporus (A15) and C. cinereus (LT2) 3 

and A. bisporus (G26) and C. cinereus (PG78Gr) strains expressing GFP under the A. 4 

bisporus GPD II promoter. GFP expression was monitored on media rich in ammonia 5 

(YMG, MMP, RA), potato dextrose agar (PDA), and ammonia free regeneration agar 6 

containing 0.094% (w/v) humic fraction, 0.084% (w/v) glutamic acid (GA), or 0.5% 7 

(w/v) milk as sole sources of nitrogen.   8 

 9 

Table 2. Sequence analysis of the A. bisporus and the predicted C. cinerea serine 10 

proteinases and promoter regions. A. bisporus genes: SPR1 & SPR2. C. cinerea genes: 11 

04562.1, 10592.1, 10615.1, 07792.1, 10606.1, 0.3122.1 & 04470.1 12 

 13 

Table 3. Percentages of amino acid sequence identity between the A. bisporus and the 14 

predicted C. cinerea serine proteinases. A. bisporus genes: SPR1 & SPR2. C. cinerea 15 

genes: 04562.1, 10592.1, 10615.1, 07792.1, 10606.1, 0.3122.1 & 04470.1 16 

 17 
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Fig 1. A: GFP expression in the A. bisporus SPR::GFP transformant TP17 when 1 

grown on regeneration agar with or without 0.094% humic fraction under phase 2 

contrast microscopy and UV light. Actively growing mycelia were examined using 3 

40× objective on a Leitz Dialux 20 research microscope with excitation filters at 450–4 

490 nm, dichroic filter at 510 nm, and emission filter at 515 nm. Images clearly show 5 

GFP fluorescence in TP17 grown on humic fraction while no fluorescence was 6 

observed when grown on RA. B: Stipe localised GFP fluorescence in A. bisporus 7 

transformant TP196. Fruiting was induced in A. bisporus transformants and bisected 8 

mushrooms viewed under white light (WL) and blue LED illumination (BL). Panel A: 9 

Images clearly show fluorescence in both the cap and stipe tissues of freshly harvested 10 

(day 0) A. bisporus G26 fruiting bodies, expressing GFP under the control of the GPD 11 

promoter. Panel B: In senescing mushrooms (3d post harvest) no GFP expression was 12 

observed in a hygromycin resistant transformant of A15 (no GFP cassette, leftmost 13 

mushroom), while GFP expression was clearly detected in the stipe tissue of 14 

SPR::GFP transformant TP196 (rightmost mushroom). 15 

 16 

Fig 2. GFP activity in senescing A. bisporus sporophores. Metered readings (relative 17 

fluorescence units) are presented for cap and stipe tissues of whole and longitudinally 18 

bisected mushrooms 3 days post harvest. GFP activity was substantially elevated in 19 

the stipes of senescing mushrooms for the SPR::GFP transformant TP196 compared 20 

with the control transformants, GPD::GFP (G26) and A15hph (no GFP cassette).  21 

 22 

Fig 3. Proteinase profiles in C. cinerea. A: Proteinase plate assay of C. cinerea. 7mm 23 

plugs of C. cinerea LT2 were inoculated onto RA and ammonium free RA plates 24 

containing 0.5% (w/v) milk solution. Proteinase production was measured by the 25 
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clearing zone produced around the colony. B: Expression of serine proteinase activity 1 

in culture filtrates during growth of C. cinerea LT2 in RA and ammonium free RA 2 

containing 0.5% (w/v) milk solution. Cultures were grown for 264 h and samples (8 3 

ml) were aseptically removed every 24 h and assayed using the synthetic peptide Suc-4 

Ala-Ala-Pro-Phe-pNA. C: Proteinase activity during C. cinerea AmutBmut 5 

sporophore development as determined using the Suc-Ala-Ala-Pro-Phe-pNA substrate 6 

in the presence or absence of inhibitor. 7 

 8 

Fig 4. A: Expression of GFP in C. cinerea T47 monokaryon and dikaryon on 9 

ammonia free regeneration agar containing 0.094% (w/v) humic fraction and on 10 

standard regeneration media (RA) viewed under phase contrast (PC) microscopy and 11 

UV light. Mycelia on actively growing plates were examined microscopically using 12 

40× objective on a Leitz Dialux 20 research microscope with excitation filters at 450–13 

490 nm, dichroic filter at 510 nm, and emission filter at 515 nm. Images clearly show 14 

GFP fluorescence in both TP47 monokaryon and dikaryon grown on humic fraction 15 

while no fluorescence was observed in transformants grown on RA. B: Expression of 16 

GFP in the C. cinerea developing fruiting body. Fruiting was induced in the dikaryon 17 

C. cinerea TP24 mated with AT8 and GFP fluorescence was monitored in the hyphal 18 

knot, primordium, karyogamy, meiosis, immature, mature and autolysis stages of 19 

development. Fruiting was induced in C. cinerea AmutBmut and fruiting body stages 20 

were also screened for GFP expression as a control. Samples were viewed under 21 

phase contrast (PC) microscopy and UV light. C: Schematic illustration of GFP 22 

fluorescence under the control of the A. bisporus SPR1 promoter through out the C. 23 

cinerea life cycle.  24 
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Table 1. 

 

Strain  Media 

  YMG RA MMP PDA 
Humic 

fraction 
GA Milk 

17 - - - + + - - 

18 - - - - + - - 

19 - - - + + + - 

21 - - - + + + + 

22 - - - + + - + 

23 - - - + + + + 

119 - - - + + - + 

120 - - - + + + + 

121 - - - + + + + 

A15 - - - - - - - 

A. bisporus  

G26 + + + + + + + 

1 - - ND + + + + 

24 - - ND + + + + 

37 - - ND + + + + 

47 + - ND + + + + 

LT2 - - ND - - - - 

C. cinereus 

monokaryon 

PG78Gr + + ND + + + + 

1 - - ND + + + + 

24 - - ND + + + + 

37 - - ND - + + + 
C. cinereus dikaryon 

47 + - ND + + + + 

 



Table 2. 

 

Gene 
Length 

(aa) 

Predicted Mol 

Wt kDa 

Predicted 

PI 

Signal 

peptide 

Cleavage 

point 
Introns Secondary structure 

Regulatory sequences in 

promoter 

       % helices % strands % Loops Nit 2/AreA CreA 

Spr1 387 39.39 5.93 + 19/20 nd 20.41 24.81 54.78 9 1 

Spr2 377 38.85 5.53 + 19/20 11 29.44 24.93 45.62 9 1 

CC1G_04562.1 394 40.093 7.75 + 20/21 14 27.99 24.94 47.07 6 2 

CC1G_10592.1 387 39.332 9.69 + 21/22 12 36.53 21.24 42.23 10 1 

CC1G_10615.1 394 40.193 9.97 + 21/22 6 30.53 20.61 48.85 13 3 

CC1G_07792.1 395 40.683 6.73 + 20/21 13 28.43 22.84 48.73 7 3 

CC1G_10606.1 346 35.359 5.83 + 19/20 13 21.16 35.07 43.77 7 4 

CC1G_0.3122.1 421 44.354 7.55 + 20/21 12 20.71 24.29 55.00 4 1 

CC1G_04470.1 500 53.18 6.84 + 21/22 2 22.24 16.63 61.12 6 8 

 



  Table 3. 

 

Gene Spr1 Spr2 04562.1 10592.1 10615.1 07792.1 10606.1 0.3122.1 04470.1 

Spr1 100         

Spr2 75 100        

04562.1 61 55 100       

10592.1 57 54 66 100      

10615.1 55 53 62 77 100     

07792.1 55 50 70 58 56 100    

10606.1 47 48 50 54 51 47 100   

0.3122.1 46 45 43 45 41 40 40 100  

04470.1 44 42 41 39 40 39 35 31 100 
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