285 research outputs found

    Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning

    Get PDF
    The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project \emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program

    Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Get PDF
    Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Treatment response of colorectal cancer liver metastases to neoadjuvant or conversion therapy : a prospective multicentre follow-up study using MRI, diffusion-weighted imaging and H-1-MR spectroscopy compared with histology (subgroup in the RAXO trial)

    Get PDF
    Background: Colorectal cancer liver metastases respond to chemotherapy and targeted agents not only by shrinking, but also by morphologic and metabolic changes. The aim of this study was to evaluate the value of advanced magnetic resonance imaging (MRI) methods in predicting treatment response and survival. Patients and methods: We investigated contrast-enhanced MRI, apparent diffusion coefficient (ADC) in diffusionweighted imaging and H-1-magnetic resonance spectroscopy (1H-MRS) in detecting early morphologic and metabolic changes in borderline or resectable liver metastases, as a response to first-line neoadjuvant or conversion therapy in a prospective substudy of the RAXO trial (NCT01531621, EudraCT2011-003158-24). MRI findings were compared with histology of resected liver metastases and KaplaneMeier estimates of overall survival (OS). Results: In 2012-2018, 52 patients at four Finnish university hospitals were recruited. Forty-seven patients received neoadjuvant or conversion chemotherapy and 40 liver resections were carried out. Low ADC values (below median) of the representative liver metastases, at baseline and after systemic therapy, were associated with partial response according to RECIST criteria, but not with morphologic MRI changes or histology. Decreasing ADC values following systemic therapy were associated with improved OS compared to unchanged or increasing ADC, both in the liver resected subgroup (5-year OS rate 100% and 34%, respectively, P = 0.022) and systemic therapy subgroup (5-year OS rate 62% and 23%, P = 0.049). H-1-MRS revealed steatohepatosis induced by systemic therapy. Conclusions: Low ADC values at baseline or during systemic therapy were associated with treatment response by RECIST but not with histology, morphologic or detectable metabolic changes. A decreasing ADC during systemic therapy is associated with improved OS both in all patients receiving systemic therapy and in the resected subgroup.Peer reviewe

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Treatment response of colorectal cancer liver metastases to neoadjuvant or conversion therapy : a prospective multicentre follow-up study using MRI, diffusion-weighted imaging and H-1-MR spectroscopy compared with histology (subgroup in the RAXO trial)

    Get PDF
    Background: Colorectal cancer liver metastases respond to chemotherapy and targeted agents not only by shrinking, but also by morphologic and metabolic changes. The aim of this study was to evaluate the value of advanced magnetic resonance imaging (MRI) methods in predicting treatment response and survival. Patients and methods: We investigated contrast-enhanced MRI, apparent diffusion coefficient (ADC) in diffusionweighted imaging and H-1-magnetic resonance spectroscopy (1H-MRS) in detecting early morphologic and metabolic changes in borderline or resectable liver metastases, as a response to first-line neoadjuvant or conversion therapy in a prospective substudy of the RAXO trial (NCT01531621, EudraCT2011-003158-24). MRI findings were compared with histology of resected liver metastases and KaplaneMeier estimates of overall survival (OS). Results: In 2012-2018, 52 patients at four Finnish university hospitals were recruited. Forty-seven patients received neoadjuvant or conversion chemotherapy and 40 liver resections were carried out. Low ADC values (below median) of the representative liver metastases, at baseline and after systemic therapy, were associated with partial response according to RECIST criteria, but not with morphologic MRI changes or histology. Decreasing ADC values following systemic therapy were associated with improved OS compared to unchanged or increasing ADC, both in the liver resected subgroup (5-year OS rate 100% and 34%, respectively, P = 0.022) and systemic therapy subgroup (5-year OS rate 62% and 23%, P = 0.049). H-1-MRS revealed steatohepatosis induced by systemic therapy. Conclusions: Low ADC values at baseline or during systemic therapy were associated with treatment response by RECIST but not with histology, morphologic or detectable metabolic changes. A decreasing ADC during systemic therapy is associated with improved OS both in all patients receiving systemic therapy and in the resected subgroup.Peer reviewe

    HHV-6B Induces IFN-Lambda1 Responses in Cord Plasmacytoid Dendritic Cells through TLR9

    Get PDF
    Human herpesvirus type 6B (HHV-6B) is a strong inducer of IFN-alpha and has the capacity to promote Th1 responses and block Th2 responses in vitro. In this study we addressed whether inactivated HHV-6B can also induce IFN lambda responses and to what extent interferons alpha and lambda affect Th1/Th2 polarization. We show that inactivated HHV-6B induced IFN-lambda1 (IL-29) but not IFN-lambda2 (IL-28A) responses in plasmacytoid DC and that this induction was mediated through TLR9. We have previously shown that HHV-6B promotes Th1 responses and blocks Th2 responses in both humans and mice. We now show that neutralization of IFN-alpha but not IFN-lambda1 blocked the HHV-6B-induced enhancement of Th1 responses in MLR, but did not affect the HHV-6-induced dampening of Th2 responses. Similarly, blockage of TLR9 counteracted HHV-6Bs effects on the Th1/Th2 balance. In addition, IFN-alpha but not IFN-lambda1 promoted IFN-gamma production and blocked IL-5 and IL-13 production in purified CD4+ T-cells. The lack of effect of IFN-lambda1 correlated with the absence of the IFN-lambda receptor IL-28Ralfa chain on the cell surface of both resting and activated CD4+ T-cells. We conclude that inactivated HHV-6B is a strong inducer of IFN-lambda1 in plasmacytoid DC and that this induction is TLR9-dependent. However, human CD4+ T-cells do not express the IFN-lambda receptor and are refractory to IFN-lambda1 treatment. The HHV-6B-induced alterations in the Th1/Th2 balance are instead mediated mainly through TLR9 and IFN-alpha
    corecore