811 research outputs found
Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models
The present paper deals with the numerical study of high pressure LOx/H2 or
LOx/hydrocarbon combustion for propulsion systems. The present research effort
is driven by the continued interest in achieving low cost, reliable access to
space and more recently, by the renewed interest in hypersonic transportation
systems capable of reducing time-to-destination. Moreover, combustion at high
pressure has been assumed as a key issue to achieve better propulsive
performance and lower environmental impact, as long as the replacement of
hydrogen with a hydrocarbon, to reduce the costs related to ground operations
and increase flexibility. The current work provides a model for the numerical
simulation of high- pressure turbulent combustion employing detailed chemistry
description, embedded in a RANS equations solver with a Low Reynolds number
k-omega turbulence model. The model used to study such a combustion phenomenon
is an extension of the standard flamelet-progress-variable (FPV) turbulent
combustion model combined with a Reynolds Averaged Navier-Stokes equation
Solver (RANS). In the FPV model, all of the thermo-chemical quantities are
evaluated by evolving the mixture fraction Z and a progress variable C. When
using a turbulence model in conjunction with FPV model, a probability density
function (PDF) is required to evaluate statistical averages of chemical
quantities. The choice of such PDF must be a compromise between computational
costs and accuracy level. State- of-the-art FPV models are built presuming the
functional shape of the joint PDF of Z and C in order to evaluate
Favre-averages of thermodynamic quantities. The model here proposed evaluates
the most probable joint distribution of Z and C without any assumption on their
behavior.Comment: presented at AIAA Scitech 201
Geography and choreography: how place influences dance making
The purpose of this research was to use Postpositivist Interpretive research measures to uncover how lived geography affected choreographic choices. I held an interview with each of three different choreographers, who lived and presented work in multiple locations, and had a tie to North Carolina. These renowned artists are Cynthia Ling Lee, Gerri Houlihan, and Helen Simoneau. Each choreographer had a very different approach to the topic; Lee acknowledged a connection between her choreography and geography in her web-based collaborations through the Post Natyam Collective; Houlihan saw her work change only in Miami; and Simoneau was hyper-aware of regionality and the potential for place to influence her work. Other findings included themes of audience reaction, interpretation, as well as community
Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report
The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics
Roles for a Lipid Phosphatase in the Activation of its Opposing Lipid Kinase
Fig4 is a phosphoinositide phosphatase that converts PI3,5P2 to PI3P. Paradoxically, mutation of Fig4 results in lower PI3,5P2, indicating that Fig4 is also required for PI3,5P2 production. Fig4 promotes elevation of PI3,5P2, in part, through stabilization of a protein complex that includes its opposing lipid kinase, Fab1, and the scaffold protein Vac14. Here we show that multiple regions of Fig4 contribute to its roles in the elevation of PI3,5P2: Its catalytic site, an N-terminal disease-related surface, and a C-terminal region. We show that mutation of the Fig4 catalytic site enhances the formation of the Fab1-Vac14-Fig4 complex, and reduces the ability to elevate PI3,5P2. This suggests that independent of its lipid phosphatase function, the active site plays a role in the Fab1-Vac14-Fig4 complex. We also show that the N-terminal disease-related surface contributes to the elevation of PI3,5P2 and promotes Fig4 association with Vac14 in a manner that requires the Fig4 C-terminus. We find that the Fig4 C-terminus alone interacts with Vac14 in vivo and retains some functions of full-length Fig4. Thus, a subset of Fig4 functions are independent of its phosphatase domain and at least three regions of Fig4 play roles in the function of the Fab1-Vac14-Fig4 complex
An Evaluation of Peer-Rated Surgical Skill and its Relationship With Detrusor Muscle Sampling in Transurethral Resection of Bladder Tumor
OBJECTIVE: To assess the reliability of peer-review of TURBT videos as a means to evaluate surgeon skill and its relationship to detrusor sampling.
METHODS: Urologists from an academic health system submitted TURBT videos in 2019. Ten blinded peers evaluated each surgeon\u27s performance using a 10-item scoring instrument to quantify surgeon skill. Normalized composite skill scores for each surgeon were calculated using peer ratings. For surgeons submitting videos, we retrospectively reviewed all TURBT pathology results (2018-2019) to assess surgeon-specific detrusor sampling. A hierarchical logistic regression model was fit to evaluate the association between skill and detrusor sampling, adjusting for patient and surgeon factors.
RESULTS: Surgeon skill scores and detrusor sampling rates were determined for 13 surgeons performing 245 TURBTs. Skill scores varied from -6.0 to 5.1 [mean: 0; standard deviation (SD): 2.40]. Muscle was sampled in 72% of cases, varying considerably across surgeons (mean: 64.5%; SD: 30.7%). Among 8 surgeons performing \u3e5 TURBTs during the study period, adjusted detrusor sampling rate was associated with sending separate deep specimens (odds ratio [OR]: 1.97; 95% confidence interval [CI]: 1.02-3.81, P = .045) but not skill (OR: 0.81; 95% CI: 0.57-1.17, P = .191).
CONCLUSION: Surgeon skill was not associated with detrusor sampling, suggesting there may be other drivers of variability of detrusor sampling in TURBT
An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study.
BACKGROUND: Epigenome-wide association studies (EWAS) have identified DNA methylation loci involved in adiposity. However, EWAS on adiposity in sub-Saharan Africans are lacking despite the high burden of adiposity among African populations. We undertook an EWAS for anthropometric indices of adiposity among Ghanaians aiming to identify DNA methylation loci that are significantly associated. METHODS: The Illumina 450k DNA methylation array was used to profile DNA methylation in whole blood samples of 547 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. Differentially methylated positions (DMPs) and differentially methylation regions (DMRs) were identified for BMI and obesity (BMI ≥ 30 kg/m2), as well as for waist circumference (WC) and abdominal obesity (WC ≥ 102 cm in men, ≥88 cm in women). All analyses were adjusted for age, sex, blood cell distribution estimates, technical covariates, recruitment site and population stratification. We also did a replication study of previously reported EWAS loci for anthropometric indices in other populations. RESULTS: We identified 18 DMPs for BMI and 23 for WC. For obesity and abdominal obesity, we identified three and one DMP, respectively. Fourteen DMPs overlapped between BMI and WC. DMP cg00574958 annotated to gene CPT1A was the only DMP associated with all outcomes analysed, attributing to 6.1 and 5.6% of variance in obesity and abdominal obesity, respectively. DMP cg07839457 (NLRC5) and cg20399616 (BCAT1) were significantly associated with BMI, obesity and with WC and had not been reported by previous EWAS on adiposity. CONCLUSIONS: This first EWAS for adiposity in Africans identified three epigenome-wide significant loci (CPT1A, NLRC5 and BCAT1) for both general adiposity and abdominal adiposity. The findings are a first step in understanding the role of DNA methylation in adiposity among sub-Saharan Africans. Studies on other sub-Saharan African populations as well as translational studies are needed to determine the role of these DNA methylation variants in the high burden of adiposity among sub-Saharan Africans
Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion
The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of biodiesel fuels and appropriately associated model fuels that may represent biodiesels in automotive engineering simulation. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were BQ-9000 certified biodiesel fuels that are certified for use in automotive engine applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multi-dimensional simulation of the combustion characteristics of such fuels in reciprocating engines. Such reliable kinetics models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal engines, engine operation and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics. During this project, we completed a major and thorough validation of a set of biodiesel surrogate components, allowing us to begin to evaluate the fundamental combustion characteristics for B100 fuels
The role of social capital in participatory arts for wellbeing: findings from a qualitative systematic review
BACKGROUND:Social capital is often cited as shaping impacts of participatory arts, although the concept has not been systematically mapped in arts, health and wellbeing contexts. In wider health inequalities research, complex, differential, and sometimes negative impacts of social capital have been recognised. METHODS:This paper maps of social capital concepts in qualitative research as part of the UK What Works for Wellbeing evidence review programme on culture, sport and wellbeing. RESULTS:Studies often cite positive impacts of bonding and, to a lesser extent, bridging social capital. However, reported challenges suggest the need for a critical approach. Forms of linking social capital, such as reframing and political engagement to address social divisions, are less often cited but may be important in participatory arts and wellbeing. CONCLUSIONS:Future research should further specify dimensions of social capital as well as their nuanced effects in arts, and wellbeing contexts
Recommended from our members
Common genetic variants of fetal hemoglobin modify hematological phenotypes in MDS/MPN/Myeloma patients receiving cytotoxic drugs
Genetic studies identify common variants within the HBS1L-MYB intergenic region (HMIP), BCL11A, and Xmn1-HBG2 as associated with elevated fetal hemoglobin (HbF) levels and other clinically important human hematological traits. Recent studies suggest HbF is a predictor of outcome in MDS/AML patients receiving decitabine. We assessed effects of HbF genetic variants on hematological traits in myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS) and myeloma on HbF-inducing therapy to determine potential for variants predicting treatment response. Seven common HbF variants at HMIP, BCL11A, Xmn1-HGB2 loci were genotyped in 89 patients with MPN on Hydroxyurea (HU), myeloma on Lenalidomide, and MDS on Azacytidine. HbF genetic association was seen with rs9494142 (HMIP) in MPN on HU (p = 0.04) and rs1427407 (BCL11A) in myeloma on Lenalidomide (p = 0.002). HMIP variants rs9494142 and rs6920211 influenced baseline platelets (p = 0.04) and hemoglobin treatment response (p = 0.02). rs1427407 (BCL11A) was significantly associated with increased platelets (p = 0.04) negating thrombocytopenic tendency of Lenalidomide. These HbF variants showed significantly discordant minor allele frequencies in MDS/MPN/myeloma compared to wider European population data. This small study findings together suggest the implication of these variants in treatment response and disease biology in MDS/MPN/myeloma warranting larger prospective genotype-phenotype association studies
- …