1,649 research outputs found
The body in the library: adventures in realism
This essay looks at two aspects of the virtual ‘material world’ of realist fiction: objects encountered by the protagonist and the latter’s body. Taking from Sartre two angles on the realist pact by which readers agree to lend
their bodies, feelings, and experiences to the otherwise ‘languishing signs’ of the text, it goes on to examine two sets of first-person fictions published between 1902 and 1956 — first, four modernist texts in which banal objects defy and then gratify the protagonist, who ends up ready and almost able to write; and, second, three novels in which the body of the protagonist is indeterminate in its sex, gender, or sexuality. In each of these cases, how do we as readers make texts work for us as ‘an adventure of the body’
Characterization of carbon nanotube–thermotropic nematic liquid crystal composites
Dispersions of carbon nanotubes (CNTs) in liquid crystals (LCs) have attracted attention due to their unique properties and possible applications in photonics and electronics. However, these are hard to stabilize, and the loading level in the equilibrium state in LC hosts is small. A practical way to monitor the quality and CNT incorporation in such equilibrium dispersions is required. Here, we compare different methods for characterising equilibrium CNT–LC composite materials
Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions
Background:
Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions.
Methods:
These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies.
Results:
Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level.
Conclusions:
These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
Adherence to a Mediterranean diet and Alzheimer's disease risk in an Australian population
The Mediterranean diet (MeDi), due to its correlation with a low morbidity and mortality for many chronic diseases, has been widely recognised as a healthy eating model. We aimed to investigate, in a cross-sectional study, the association between adherence to a MeDi and risk for Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large, elderly, Australian cohort. Subjects in the Australian Imaging, Biomarkers and Lifestyle Study of Ageing cohort (723 healthy controls (HC), 98 MCI and 149 AD participants) completed the Cancer Council of Victoria Food Frequency Questionnaire. Adherence to the MeDi (0- to 9-point scale with higher scores indicating higher adherence) was the main predictor of AD and MCI status in multinominal logistic regression models that were adjusted for cohort age, sex, country of birth, education, apolipoprotein E genotype, total caloric intake, current smoking status, body mass index, history of diabetes, hypertension, angina, heart attack and stroke. There was a significant difference in adherence to the MeDi between HC and AD subjects (P < 0.001), and in adherence between HC and MCI subjects (P < 0.05). MeDi is associated with change in Mini-Mental State Examination score over an 18-month time period (P < 0.05) in HCs. We conclude that in this Australian cohort, AD and MCI participants had a lower adherence to the MeDi than HC participants.S Gardener, Y Gu, S R Rainey-Smith, J B Keogh, P M Clifton, S L Mathieson, K Taddei, A Mondal, V K Ward, N Scarmeas, M Barnes, K A Ellis, R Head, C L Masters, D Ames, S L Macaulay, C C Rowe, C Szoeke and R N Martins for the AIBL Research Grou
18 - Assessing Methane Concentrations in Residential Floodwaters
Methane (CH4) is a potent greenhouse gas partially responsible for global temperature increase. This compound is released by methane-producing organisms known as methanogens. We aimed to sample and analyze local marine methane levels to track changes over time during a King Tide flooding event to provide insights into where methane is enriched in local urban waterways. We collected water from 10 sites in a 12-day time series in Chesapeake Bay tributaries in Norfolk, Virginia, and processed these samples in a gas chromatograph (GC). Methane concentrations were highly variable among stations and varied to a lesser extent over the sampling period at each station. Additionally, we analyzed a time series of samples taken from our most CH4-concentrated site to study methane\u27s decay due to the activity of methanotrophs (methane-consuming organisms). We observed a logistic (S-shaped) decrease in methane concentration over time. The decay rate was slow initially and increased to a maximum value of 0.9 per day on day 12. While we identified strong local sources of methane in this urban estuary we also observed the efficiency of local methane-eating bacteria that rapidly diminished methane levels with time. Our results shows that the Elizabeth and Lafayette rivers are both highly variable sources and sinks of methane
Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow
We review modeling of astrocyte ion dynamics with a specific focus on the
implications of so-called spatial potassium buffering, where excess potassium
in the extracellular space (ECS) is transported away to prevent pathological
neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for
modeling ion dynamics in astrocytes (and brain tissue in general) is outlined
and used to study such spatial buffering. We next describe how the ion dynamics
of astrocytes may regulate microscopic liquid flow by osmotic effects and how
such microscopic flow can be linked to whole-brain macroscopic flow. We thus
include the key elements in a putative multiscale theory with astrocytes
linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure
A Critical Race Theory Analysis of Big-Time College Sports: Implications for Culturally Responsive and Race-Conscious Sport Leadership
- …
