1,860 research outputs found

    Physical Conditions in Orion's Veil

    Get PDF
    Orion's veil consists of several layers of largely neutral gas lying between us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I absorption and in optical and UV absorption lines of H I and other species. Toward the Trapezium, the veil has two remarkable properties, high magnetic field (~100 microGauss) and a surprising lack of molecular hydrogen given its total hydrogen column density. Here we compute photoionization models of the veil to establish its gas density and its distance from the Trapezium. We use a greatly improved model of the hydrogen molecule that determines level populations in ~1e5 rotational/vibrational levels and provides improved estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our best fit photoionization models place the veil 1-3 pc in front of the star at a density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of non-thermal motions in at least one of the 21cm H I velocity components. Therefore, the veil is the first interstellar environment where magnetic dominance appears to exist. We find that the low ratio of molecular to atomic hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due to its proximity to the Trapezium stars and the absence of small grains in the region.Comment: 45 pages, 20 figures, accepted for publication in Ap

    Monitoring the Variable Interstellar Absorption toward HD 219188 with HST/STIS

    Full text link
    We discuss the results of continued spectroscopic monitoring of the variable intermediate-velocity (IV) absorption at v = -38 km/s toward HD 219188. After reaching maxima in mid-2000, the column densities of both Na I and Ca II in that IV component declined by factors >= 2 by the end of 2006. Comparisons between HST/STIS echelle spectra obtained in 2001, 2003, and 2004 and HST/GHRS echelle spectra obtained in 1994--1995 indicate the following: (1) The absorption from the dominant species S II, O I, Si II, and Fe II is roughly constant in all four sets of spectra -- suggesting that the total N(H) and the (mild) depletions have not changed significantly over a period of nearly ten years. (2) The column densities of the trace species C I (both ground and excited fine-structure states) and of the excited state C II* all increased by factors of 2--5 between 1995 and 2001 -- implying increases in the hydrogen density n_H (from about 20 cm^{-3} to about 45 cm^{-3}) and in the electron density n_e (by a factor >= 3) over that 6-year period. (3) The column densities of C I and C II* -- and the corresponding inferred n_H and n_e -- then decreased slightly between 2001 and 2004. (4) The changes in C I and C II* are very similar to those seen for Na I and Ca II. The relatively low total N(H) and the modest n_H suggest that the -38 km/s cloud toward HD 219188 is not a very dense knot or filament. Partial ionization of hydrogen appears to be responsible for the enhanced abundances of Na I, C I, Ca II, and C II*. In this case, the variations in those species appear to reflect differences in density and ionization [and not N(H)] over scales of tens of AU.Comment: 33 pages, 6 figures, aastex, accepted to Ap

    Screening for elderly patients admitted to the emergency department requiring specialized geriatric care

    Get PDF
    BACKGROUND: There is a need for a brief geriatric assessment (BGA) tool to screen elderly patients admitted to the Emergency Department (ED) for their risk of a long hospital stay. OBJECTIVE: To examine whether a BGA administered to elderly patients admitted to the ED may predict the risk of a long hospital stay in the geriatric acute care unit. METHODS: This study had a prospective cohort study design, enrolling 424 elderly patients (mean age 84.0 +/- 6.5 years, 31.6% male) who were evaluated in the ED using a BGA composed of the following items: age, gender, number of medications taken daily, history of falls during the past 6 months, Mini-Mental State Examination (MMSE) score, and non-use of home-help services (i.e., living alone without using any formal or informal home services or social help). The length of stay (LOS) was calculated in days. Patients were separated into three groups based on LOS: low (&lt;8 days), intermediate (8-13 days), and high (&gt;13 days). RESULTS: The prevalence of male gender was higher among patients with the longest LOS compared to those with intermediate LOS (p = 0.002). There were more patients with a history of falls in the high LOS group compared to the intermediate LOS group (p = 0.001) and the low LOS group (p &lt; 0.001). The classification tree showed that male patients with an MMSE score &lt;20 who fell with age under 85 years formed the end node with the greatest relative risk (RR) of a long hospital stay (RR = 14.3 with p &lt; 0.001). CONCLUSIONS: The combination of a history of falls, male gender, cognitive impairment, and age under 85 years identified elderly ED patients at high risk of a long hospital stay

    Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium

    Full text link
    Orion's Veil is an absorbing screen that lies along the line of sight to the Orion H II region. It consists of two or more layers of gas that must lie within a few parsecs of the Trapezium cluster. Our previous work considered the Veil as a whole and found that the magnetic field dominates the energetics of the gas in at least one component. Here we use high-resolution STIS UV spectra that resolve the two velocity components in absorption and determine the conditions in each. We derive a volume hydrogen density, 21 cm spin temperature, turbulent velocity, and kinetic temperature, for each. We combine these estimates with magnetic field measurements to find that magnetic energy significantly dominates turbulent and thermal energies in one component, while the other component is close to equipartition between turbulent and magnetic energies. We observe molecular hydrogen absorption for highly excited v, J levels that are photoexcited by the stellar continuum, and detect blueshifted S III and P III. These ions must arise from ionized gas between the mostly neutral portions of the Veil and the Trapezium and shields the Veil from ionizing radiation. We find that this layer of ionized gas is also responsible for He I absorption in the Veil, which resolves a 40-year-old debate on the origin of He I absorption towards the Trapezium. Finally, we determine that the ionized and mostly atomic layers of the Veil will collide in less than 85,000 years.Comment: 43 pages, 15 figures, to be published in Ap

    High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources

    Full text link
    The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows OH and H_2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our analysis shows that OH and H_2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (T_dust=70-100 K), optically thick (tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity L_IR, the observed OH and H2O high-lying lines arise from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron, and [O I] 63 micron lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mkn 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Field-linked States of Ultracold Polar Molecules

    Full text link
    We explore the character of a novel set of ``field-linked'' states that were predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006 (2003)]. These states exist at ultralow temperatures in the presence of an electrostatic field, and their properties are strongly dependent on the field's strength. We clarify the nature of these quasi-bound states by constructing their wave functions and determining their approximate quantum numbers. As the properties of field-linked states are strongly defined by anisotropic dipolar and Stark interactions, we construct adiabatic surfaces as functions of both the intermolecular distance and the angle that the intermolecular axis makes with the electric field. Within an adiabatic approximation we solve the 2-D Schrodinger equation to find bound states, whose energies correlate well with resonance features found in fully-converged multichannel scattering calculations

    An experimental investigation of the laminar horseshoe vortex around an emerging obstacle

    Full text link
    An emerging long obstacle placed in a boundary layer developing under a free-surface generates a complex horseshoe vortex (HSV) system, which is composed of a set of vortices exhibiting a rich variety of dynamics. The present experimental study examines such flow structure and characterizes precisely, using PIV measurements, the evolution of the HSV geometrical and dynamical properties over a wide range of dimensionless parameters (Reynolds number Reh[750,8300]Re_h \in [750, 8300], boundary layer development ratio h/δ[1.25,4.25]h/\delta \in [1.25, 4.25] and obstacle aspect ratio W/h[0.67,2.33]W/h \in [0.67, 2.33]). The dynamical study of the HSV is based on the categorization of the HSV vortices motion into an enhanced specific bi-dimensional typology, separating a coherent (due to vortex-vortex interactions) and an irregular evolution (due to appearance of small-scale instabilities). This precise categorization is made possible thanks to the use of vortex tracking methods applied on PIV measurements, A semi-empirical model for the HSV vortices motion is then proposed to highlight some important mechanisms of the HSV dynamics, as (i) the influence of the surrounding vortices on a vortex motion and (ii) the presence of a phase shift between the motion of all vortices. The study of the HSV geometrical properties (vortex position and characteristic lengths and frequencies) evolution with the flow parameters shows that strong dependencies exist between the streamwise extension of the HSV and the obstacle width, and between the HSV vortex number and its elongation. Comparison of these data with prior studies for immersed obstacles reveals that emerging obstacles lead to greater adverse pressure gradients and down-flows in front of the obstacle

    Mortality Prediction after the First Year of Kidney Transplantation: An Observational Study on Two European Cohorts.

    Get PDF
    After the first year post transplantation, prognostic mortality scores in kidney transplant recipients can be useful for personalizing medical management. We developed a new prognostic score based on 5 parameters and computable at 1-year post transplantation. The outcome was the time between the first anniversary of the transplantation and the patient's death with a functioning graft. Afterwards, we appraised the prognostic capacities of this score by estimating time-dependent Receiver Operating Characteristic (ROC) curves from two prospective and multicentric European cohorts: the DIVAT (Données Informatisées et VAlidées en Transplantation) cohort composed of patients transplanted between 2000 and 2012 in 6 French centers; and the STCS (Swiss Transplant Cohort Study) cohort composed of patients transplanted between 2008 and 2012 in 6 Swiss centers. We also compared the results with those of two existing scoring systems: one from Spain (Hernandez et al.) and one from the United States (the Recipient Risk Score, RRS, Baskin-Bey et al.). From the DIVAT validation cohort and for a prognostic time at 10 years, the new prognostic score (AUC = 0.78, 95%CI = [0.69, 0.85]) seemed to present significantly higher prognostic capacities than the scoring system proposed by Hernandez et al. (p = 0.04) and tended to perform better than the initial RRS (p = 0.10). By using the Swiss cohort, the RRS and the the new prognostic score had comparable prognostic capacities at 4 years (AUC = 0.77 and 0.76 respectively, p = 0.31). In addition to the current available scores related to the risk to return in dialysis, we recommend to further study the use of the score we propose or the RRS for a more efficient personalized follow-up of kidney transplant recipients

    Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy.

    Get PDF
    Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation
    corecore