194 research outputs found

    The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia

    Get PDF
    Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies

    A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition

    Get PDF
    Upper Mesopotamia played a key role in the Neolithic Transition in Southwest Asia through marked innovations in symbolism, technology, and diet. We present 13 ancient genomes (c. 8500 to 7500 cal BCE) from Pre-Pottery Neolithic Cayonu in the Tigris basin together with bioarchaeological and material culture data. Our findings reveal that Cayonu was a genetically diverse population, carrying mixed ancestry from western and eastern Fertile Crescent, and that the community received immigrants. Our results further suggest that the community was organized along biological family lines. We document bodily interventions such as head shaping and cauterization among the individuals examined, reflecting Cayonu's cultural ingenuity. Last, we identify Upper Mesopotamia as the likely source of eastern gene flow into Neolithic Anatolia, in line with material culture evidence. We hypothesize that Upper Mesopotamia's cultural dynamism during the Neolithic Transition was the product not only of its fertile lands but also of its interregional demographic connections.European Research Council [772390, 952317]; European Research Council (ERC) [772390] Funding Source: European Research Council (ERC)This work was supported by the European Research Council Consolidator Grant H2020 ERC (no. 772390 NEOGENE to M.S.) and H2020-WIDESPREAD-05-2020 TWINNING Grant (no. 952317 NEOMATRIXto M.S.)

    Resilient cooling strategies – A critical review and qualitative assessment

    Get PDF
    The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out

    Resilient cooling strategies – A critical review and qualitative assessment

    Get PDF
    The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out

    A novel underuse model shows that inactivity but not ovariectomy determines the deteriorated material properties and geometry of cortical bone in the tibia of adult rats

    Get PDF
    Our goal in this study was to determine to what extent the physiologic consequences of ovariectomy (OVX) in bones are exacerbated by a lack of daily activity such as walking. We forced 14-week-old female rats to be inactive for 15 weeks with a unique experimental system that prevents standing and walking while allowing other movements. Tibiae, femora, and 4th lumbar vertebrae were analyzed by peripheral quantitative computed tomography (pQCT), microfocused X-ray computed tomography (micro-CT), histology, histomorphometry, Raman spectroscopy, and the three-point bending test. Contrary to our expectation, the exacerbation was very much limited to the cancellous bone parameters. Parameters of femur and tibia cortical bone were affected by the forced inactivity but not by OVX: (1) cross-sectional moment of inertia was significantly smaller in Sham-Inactive rat bones than that of their walking counterparts; (2) the number of sclerostin-positive osteocytes per unit cross-sectional area was larger in Sham-Inactive rat bones than in Sham-Walking rat bones; and (3) material properties such as ultimate stress of inactive rat tibia was lower than that of their walking counterparts. Of note, the additive effect of inactivity and OVX was seen only in a few parameters, such as the cancellous bone mineral density of the lumbar vertebrae and the structural parameters of cancellous bone in the lumbar vertebrae/tibiae. It is concluded that the lack of daily activity is detrimental to the strength and quality of cortical bone in the femur and tibia of rats, while lack of estrogen is not. Our inactive rat model, with the older rats, will aid the study of postmenopausal osteoporosis, the etiology of which may be both hormonal and mechanical

    Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia and the East Mediterranean

    Get PDF
    We present a spatiotemporal picture of human genetic diversity in Anatolia, Iran, Levant, South Caucasus, and the Aegean, a broad region that experienced the earliest Neolithic transition and the emergence of complex hierarchical societies. Combining 35 new ancient shotgun genomes with 382 ancient and 23 present-day published genomes, we found that genetic diversity within each region steadily increased through the Holocene. We further observed that the inferred sources of gene flow shifted in time. In the first half of the Holocene, Southwest Asian and the East Mediterranean populations homogenized among themselves. Starting with the Bronze Age, however, regional populations diverged from each other, most likely driven by gene flow from external sources, which we term “the expanding mobility model.” Interestingly, this increase in inter-regional divergence can be captured by outgroup-f3_3-based genetic distances, but not by the commonly used FST_{ST} statistic, due to the sensitivity of FST_{ST}, but not outgroup-f3_3, to within-population diversity. Finally, we report a temporal trend of increasing male bias in admixture events through the Holocene

    On the Taeniopterygidae (Plecoptera) fauna of Turkey

    No full text
    Brachyptera ankara sp. n. is described and a redescription of Brachyptera sislii Kazanci and a new genus and species record for Turkey, Rhabdiopteryx with Rhabdiopteryx doiranensis Ikonomov, are given
    corecore