3,924 research outputs found

    Near-IR imaging of T Cha: evidence for scattered-light disk structures at solar system scales

    Full text link
    T Chamaeleontis is a young star surrounded by a transitional disk, and a plausible candidate for ongoing planet formation. Recently, a substellar companion candidate was reported within the disk gap of this star. However, its existence remains controversial, with the counter-hypothesis that light from a high inclination disk may also be consistent with the observed data. The aim of this work is to investigate the origin of the observed closure phase signal to determine if it is best explained by a compact companion. We observed T Cha in the L and K s filters with sparse aperture masking, with 7 datasets covering a period of 3 years. A consistent closure phase signal is recovered in all L and K s datasets. Data were fit with a companion model and an inclined circumstellar disk model based on known disk parameters: both were shown to provide an adequate fit. However, the absence of expected relative motion for an orbiting body over the 3-year time baseline spanned by the observations rules out the companion model. Applying image reconstruction techniques to each dataset reveals a stationary structure consistent with forward scattering from the near edge of an inclined disk.Comment: 6 pages, 3 figures, accepted for publication in MNRAS Letter

    Removal of the center of mass in nuclei and its effects on 4He

    Get PDF
    Abstract The singular value decomposition of rectangular matrices is shown to provide the recipe for removing the center of mass spurious admixtures from the multiphonon basis generated by an equation of motion method for solving the nuclear eigenvalue problem. It works for any single particle basis without any energy restriction on the selection of the configurations. Its effects on 4He are illustrated

    High resolution observations of the outer disk around T Cha: the view from ALMA

    Full text link
    T Cha is a young star surrounded by a transitional disk with signatures of planet formation. We have obtained high-resolution and high-sensitivity ALMA observations of T Cha in the CO(3{\rm CO}(3--2)2), 13CO(3{\rm ^{13}CO}(3--2)2), and CS(7{\rm CS}(7--6)6) emission lines to reveal the spatial distribution of the gaseous disk around the star. In order to study the dust within the disk we have also obtained continuum images at 850μ\mum from the line-free channels. We have spatially resolved the outer disk around T Cha. Using the CO(3-2) emission we derive a radius of ∼\sim230 AU. We also report the detection of the 13^{13}CO(3-2) and the CS(7-8) molecular emissions, which show smaller radii than the CO(3-2) detection. The continuum observations at 850μ\mum allow the spatial resolution of the dusty disk, which shows two emission bumps separated by ∼\sim40AU, consistent with the presence of a dust gap in the inner regions of the disk, and an outer radius of ∼\sim80AU. Therefore, T Cha is surrounded by a compact dusty disk and a larger and more diffuse gaseous disk, as previously observed in other young stars. The continuum intensity profiles are different at both sides of the disk suggesting possible dust asymmetries. We derive an inclination of i(deg)=67±\pm5, and a position angle of PA (deg)= 113±\pm6, for both the gas and dust disks. The comparison of the ALMA data with radiative transfer models shows that the gas and dust components can only be simultaneously reproduced when we include a tapered edge prescription for the surface density profile. The best model suggests that most of the disk mass is placed within a radius of R<R< 50AU. Finally, we derive a dynamical mass for the central object of M∗M_{*}=1.5±\pm0.2M⊙_{\odot}, comparable to the one estimated with evolutionary models for an age of ∼\sim10Myr.Comment: 5 pages, 5 figures, accepted for publication in A&A Letter

    A proto brown dwarf candidate in Taurus

    Get PDF
    Aims. We search for brown dwarfs at the Class 0/I evolutionary stage, or proto brown dwarfs. Methods. We present a multi wavelength study, ranging from optical at 0.8 μm to radio wavelengths at 6 cm, of a cool, very faint, and red multiple object, SSTB213 J041757, detected by Spitzer toward the Barnard 213 dark cloud, in Taurus. Results. The SED of SSTB213 J041757 displays a clear excess at long wavelengths resembling that of a Class I object. The mid-IR source has two possible counterparts, A and B, in the near-IR and optical images, and the 350 μm observations detect clear extended emission, presumably from an envelope around the two sources. The position of A & B in the (Ic− J) versus (J − [3.6]) colour-colour diagram is consistent with them being Galactic sources and not extragalactic contaminants. A proper-motion study confirms this result for A, while it is inconclusive for B. The temperature and mass of the two possible central objects, according to COND evolutionary models, range between 1550−1750 K and 3−4 M_(Jupiter), and 950−1300 K and 1−2 M_(Jupiter), for A and B, respectively. The integrated SED provides bolometric temperatures and luminosities of 280 K and 0.0034 L_⊙, assuming that the emission at wavelengths > 5 μm is associated with component A, and 150 K and 0.0033 L_⊙, assuming that the emission at wavelengths > 5 μm is associated with component B, which would imply the SSTB213 J041757 object has a luminosity well below the luminosity of other very low luminosity objects discovered up to date. Conclusions. With these characteristics, SSTB213 J041757 seems to be a promising, and perhaps double, proto brown dwarf candidate

    A submillimeter search for pre- and proto-brown dwarfs in Chamaeleon II

    Full text link
    Context. Chamaeleon II molecular cloud is an active star forming region that offers an excellent opportunity for studying the formation of brown dwarfs in the southern hemisphere. Aims. Our aims are to identify a population of pre- and proto- brown dwarfs (5 sigma mass limit threshold of ~0.015 Msun) and provide information on the formation mechanisms of substellar objects. Methods. We performed high sensitivity observations at 870 microns using the LABOCA bolometer at the APEX telescope towards an active star forming region in Chamaeleon II. The data are complemented with an extensive multiwavelength catalogue of sources from the optical to the far-infrared to study the nature of the LABOCA detections. Results. We detect fifteen cores at 870 microns, and eleven of them show masses in the substellar regime. The most intense objects in the surveyed field correspond to the submillimeter counterparts of the well known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5 microns. Conclusions. Our analysis indicates that most of the spatially resolved cores are transient, and that the point-like starless cores in the sub-stellar regime (with masses between 0.016 Msun and 0.066 Msun) could be pre-brown dwarfs cores gravitationally unstable if they have radii smaller than 220 AU to 907 AU (1.2" to 5" at 178 pc) respectively for different masses. ALMA observations will be the key to reveal the energetic state of these pre-brown dwarfs candidates.Comment: 11 pages, 6 figure

    A search for pre- and proto-brown dwarfs in the dark cloud Barnard 30 with ALMA

    Full text link
    In this work we present ALMA continuum observations at 880 μ\mum of 30 sub-mm cores previously identified with APEX/LABOCA at 870μ\mum in the Barnard 30 cloud. The main goal is to characterize the youngest and lowest mass population in the cloud. As a result, we report the detection of five (out of 30) spatially unresolved sources with ALMA, with estimated masses between 0.9 and 67 MJup_{\rm Jup}. From these five sources, only two show gas emission. The analysis of multi-wavelength photometry from these two objects, namely B30-LB14 and B30-LB19, is consistent with one Class II- and one Class I low-mass stellar object, respectively. The gas emission is consistent with a rotating disk in the case of B30-LB14, and with an oblate rotating envelope with infall signatures in the case of LB19. The remaining three ALMA detections do not have infrared counterparts and can be classified as either deeply embedded objects or as starless cores if B30 members. In the former case, two of them (LB08 and LB31) show internal luminosity upper limits consistent with Very Low Luminosity objects, while we do not have enough information for LB10. In the starless core scenario, and taking into account the estimated masses from ALMA and the APEX/LABOCA cores, we estimate final masses for the central objects in the substellar domain, so they could be classified as pre-BD core candidates.Comment: Published in A&

    A collimated, ionized bipolar structure and a high density torus in the young planetary nebula IRAS 17347-3139

    Full text link
    We present observations of continuum (lambda = 0.7, 1.3, 3.6 and 18 cm) and OH maser (lambda = 18 cm) emission toward the young planetary nebula IRAS 17347-3139, which is one of the three planetary nebulae that are known to harbor water maser emission. From the continuum observations we show that the ionized shell of IRAS 17347-3139 consists of two main structures: one extended (size ~1". 5) with bipolar morphology along PA=-30 degrees, elongated in the same direction as the lobes observed in the near-infrared images, and a central compact structure (size ~0". 25) elongated in the direction perpendicular to the bipolar axis, coinciding with the equatorial dark lane observed in the near-infrared images. Our image at 1.3 cm suggests the presence of dense walls in the ionized bipolar lobes. We estimate for the central compact structure a value of the electron density at least ~5 times higher than in the lobes. A high resolution image of this structure at 0.7 cm shows two peaks separated by about 0". 13 (corresponding to 100-780 AU, using a distance range of 0.8-6 kpc). This emission is interpreted as originating in an ionized equatorial torus-like structure, from whose edges the water maser emission might be arising. We have detected weak OH 1612 MHz maser emission at VLSR ~ -70 km/s associated with IRAS 17347-3139. We derive a 3 sigma upper limit of < 35% for the percentage of circularly polarized emission. Within our primary beam, we detected additional OH 1612 MHz maser emission in the LSR velocity ranges -5 to -24 and -90 to -123 km/s, associated with the sources 2MASS J17380406-3138387 and OH 356.65-0.15, respectively.Comment: 26 pages, 8 figures. Accepted for publication in Ap

    First detection of thermal radio jets in a sample of proto-brown dwarf candidates

    Full text link
    We observed with the JVLA at 3.6 and 1.3 cm a sample of 11 proto-brown dwarf candidates in Taurus in a search for thermal radio jets driven by the most embedded brown dwarfs. We detected for the first time four thermal radio jets in proto-brown dwarf candidates. We compiled data from UKIDSS, 2MASS, Spitzer, WISE and Herschel to build the Spectral Energy Distribution (SED) of the objects in our sample, which are similar to typical Class~I SEDs of Young Stellar Objects (YSOs). The four proto-brown dwarf candidates driving thermal radio jets also roughly follow the well-known trend of centimeter luminosity against bolometric luminosity determined for YSOs, assuming they belong to Taurus, although they present some excess of radio emission compared to the known relation for YSOs. Nonetheless, we are able to reproduce the flux densities of the radio jets modeling the centimeter emission of the thermal radio jets using the same type of models applied to YSOs, but with corresponding smaller stellar wind velocities and mass-loss rates, and exploring different possible geometries of the wind or outflow from the star. Moreover, we also find that the modeled mass outflow rates for the bolometric luminosities of our objects agree reasonably well with the trends found between the mass outflow rates and bolometric luminosities of YSOs, which indicates that, despite the "excess" centimeter emission, the intrinsic properties of proto-brown dwarfs are consistent with a continuation of those of very low mass stars to a lower mass range. Overall, our study favors the formation of brown dwarfs as a scaled-down version of low-mass stars.Comment: 18 pages, 8 figures, 14 tables, accepted by the Astrophysical Journa

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory

    High-Resolution Observations in B1-IRS: ammonia, CCS and water masers

    Full text link
    We present a study of the structure and dynamics of the star forming region B1-IRS (IRAS 03301+3057) using the properties of different molecules at high angular resolution (~4''). We have used VLA observations of NH3, CCS, and H2O masers at 1 cm. CCS emission shows three clumps around the central source, with a velocity gradient from red to blueshifted velocities towards the protostar, probably due to the interaction with outflowing material. Water maser emission is elongated in the same direction as a reflection nebula detected at 2micron by 2MASS, with the maser spots located in a structure of some hundreds of AU from the central source, possibly tracing a jet. We propose a new outflow model to explain all our observations, consisting of a molecular outflow near the plane of the sky. Ammonia emission is extended and anticorrelated with CCS. We have detected for the first time this anticorrelation at small scales (1400 AU) in a star forming region.Comment: 6 pages, 3 figures. To appear in the Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galactic Nuclei", Eds. Y.Hagiwara, W.A.Baan, H.J.van Langevelde, 2004, a special issue of ApSS, Kluwe
    • …
    corecore