1,474 research outputs found

    Of Screening, Stratification, and Scores

    Get PDF
    Technological innovations including risk-stratification algorithms and large databases of longitudinal population health data and genetic data are allowing us to develop a deeper understanding how individual behaviors, characteristics, and genetics are related to health risk. The clinical implementation of risk-stratified screening programmes that utilise risk scores to allocate patients into tiers of health risk is foreseeable in the future. Legal and ethical challenges associated with risk-stratified cancer care must, however, be addressed. Obtaining access to the rich health data that are required to perform risk-stratification, ensuring equitable access to risk-stratified care, ensuring that algorithms that perform risk-scoring are representative of human genetic diversity, and determining the appropriate follow-up to be provided to stratification participants to alert them to changes in their risk score are among the principal ethical and legal challenges. Accounting for the great burden that regulatory requirements could impose on access to risk-scoring technologies is another critical consideration

    A model of maxilla resection to test new hybrid implants:macroporous titanium and tissue engineering elements

    Get PDF
    Maxillary bone loss in commonly found in humans, due to bone ageing, tooth loos, periodontal disease and, more severely, to trauma, radiotherapy and tumor resection. Masillofacial reconstructive surgery is a still unmet clinical demand, available therapies include grafting of autologous or heterologous bone tissue and/or the implantation of metallic plates, buy these treatments are still unable to resume form and function. The emrgence of 3D-printing technology applied to metal alloys now allows the manufacturing of customized, patient-tailored prosthetic implants. However, poor bone quiality at the implant site due to ageing or disease still hamper proper osseointegration. By combining Electron Beam Melting metal sintering and tissue engineering, we are developing hybrid maxillofacial implants, wher a metal framework of Ti6Al4V alloy confers both and appropiaate shape and mechanical stabilty, while stem cells and osteogenic molecules stimulate bone growth into the metal framework, thus pormoting osseointegration. We hereby present the in vitro work driving to the development of our hybrid maxillofacial prostheses, as well as the setting up of an in vivo model of complete maxilla full resection, created in order to test the prostheses in a preclinical studyUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Caracterización de carbón activado sintetizado a baja temperatura a partir de cáscara de cacao (Theobroma cacao) para la adsorción de amoxicilina

    Get PDF
    (Eng) The objective of the present investigation was to synthesize and characterize activated carbon obtained at low temperature from cocoa shell (Theobroma cacao), which was modified with zinc chloride (ZnCl2) for its use in the removal of amoxicillin. Biomass was characterized by elemental analysis and activated carbon by scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface area analysis (BET) in order to determine the chemical composition, morphological and structural characteristics. In the molecular adsorption tests of amoxicillin, an aqueous solution with a concentration of 20ppm of the contaminant at pH 6 and 9 was used, to which 5g of the adsorbent material impregnated with zinc chloride was added at 1: 3 and 1: 4 ratios. . For the 1: 3 and 1: 4 activated carbons, surface areas of 287.5 m2 / g and 205.4 m2 / g were reached respectively, with average pore sizes of 3 to 4 nm. The percentage of removal of amoxicillin was influenced by the pH of the solution to be treated, reaching the highest percentages at acidic pH, the removal values ​​reached for activated carbon 1: 3 were 75.4% and 67.2%, while for activated carbon 1: 4 they were 65.2% and 56.7% for solutions pH 6 and 9, respectively. It is concluded that the activated carbon obtained at low temperature is a good material to remove amoxicillin in solution.(Spa) El objetivo de la presente investigación fue sintetizar y caracterizar carbón activado obtenido a baja temperatura a partir de la cascara de cacao (Theobroma cacao), la cual se modificó con cloruro de zinc (ZnCl2) para su uso en la remoción de amoxi­cilina. La biomasa fue caracterizada mediante análisis elemental y el carbón activado mediante microscopia electrónica de barrido (SEM), difracción de rayos X (DRX) y análisis de área superficial (BET) con el fin de determinar la composición química, las características morfológicas y estructurales. En los ensayos de adsorción molecular de amoxicilina se utilizó una solución acuosa con una concentración de 20ppm del contaminante a pH 6 y 9, a la cual se le agregó 5g del material adsor­bente impregnado con Cloruro de zinc a relaciones 1:3 y 1:4. Para los carbones activados 1:3 y 1:4 se alcanzaron áreas super­ficiales de 287,5 m2/g y 205,4 m2/g respectivamente, con tamaños de poro promedio de 3 a 4 nm. El porcentaje de remoción de amoxicilina se vio influenciado por el pH de la solución a tratar, alcanzándose los mayores porcentajes a pH ácidos, los valores de remoción alcanzado para el carbón activado 1:3 fueron de 75,4% y 67,2%, mientras que para el carbón activado 1:4 fueron 65,2% y 56,7% para las soluciones pH 6 y 9, respectivamente. Se concluye que el carbón activado obtenido a baja temperatura es un buen material para remover amoxicilina en solución

    Short-range charge-order in RRNiO3_{3} perovskites (RR=Pr,Nd,Eu) probed by X-ray absorption spectroscopy

    Get PDF
    The short-range organization around Ni atoms in orthorhombic RRNiO3_{3} (RR=Pr,Nd,Eu) perovskites has been studied over a wide temperature range by Ni K-edge x-ray absorption spectroscopy. Our results demonstrate that two different Ni sites, with different average Ni-O bond lengths, coexist in those orthorhombic compounds and that important modifications in the Ni nearest neighbors environment take place across the metal-insulator transition. We report evidences for the existence of short-range charge-order in the insulating state, as found in the monoclinic compounds. Moreover, our results suggest that the two different Ni sites coexists even in the metallic state. The coexistence of two different Ni sites, independently on the RR ion, provides a common ground to describe these compounds and shed new light in the understanding of the phonon-assisted conduction mechanism and unusual antiferromagnetism present in all RRNiO3_{3} compounds.Comment: 4 pages, 3 figures, accepted PRB - Brief Report Dec.200

    Mismeasure of secondary sexual traits: An example with horn growth in the Iberian ibex

    Get PDF
    Monitoring programmes and studies focused on secondary sexual characters (SSCs) depend on the accuracy of measurements. However, methods of measurements of SSC, such as horns of ungulates, vary throughout the literature. Thus, the accuracy of horn growth measurements as proxies of true horn growth and the comparability of results inferred from different horn growth measurements may be questionable. We used the horns of Iberian ibex Capra pyrenaica to compare horn growth measurements and to analyse reliability with true horn growth. Our results reveal that measurements used in previous studies differed substantially from true horn growth and volume estimated as a barrel appeared as the best proxy of annular segments of horns in the Iberian ibex. Horn growth measurements are not necessarily mutually comparable, just as classical measurements are not necessarily representative of true horn growth. We discuss the wider implications of these results and suggest that biological processes linked to horns of ungulates should be reappraised using improved and accurate measurements because horn growth pattern is a key factor in sustainable management and conservation plans of ungulate species around the world. © 2012 The Authors. Journal of Zoology © 2012 The Zoological Society of London.Peer Reviewe

    Taking the Pressure Off the Patient - Understanding Digital Rectal Examinations on a Real Subject.

    Get PDF
    Better understanding of palpation techniques during unsighted physical examinations has mostly been limited to qualitative and quantitative studies of performance of experts whilst conducting examinations on plastic benchtop models. However, little is known about their performance when conducting such examinations on real subjects. OBJECTIVE: The aim of this paper is to better understand palpation techniques of experts whilst conducting a Digital Rectal Examination on a real subject. METHODS: We recruited four consultants from relevant specialties and asked them to conduct two DREs on a Rectal Teaching Assistant whilst wearing small position and pressure sensors on their examining finger. We segmented the relevant anatomy from an MRI taken of the pelvic region, registered 3D models and analysed retrospectively performance in relation to executed tasks, supination/pronation, palpation convex hull and pressure applied. RESULTS: Primary care consultants examined the anatomy more holistically compared to secondary care experts, the maximum pressure applied across experiments is 3.3N, overall the pressure applied on the prostate is higher than that applied to rectal walls, and the urologist participant not only applied the highest pressure but also did so with the highest most prominent frequency (15.4 and 25.3 Hz). CONCLUSIONS: The results of our research allow for better understanding of experts' technical performance from relevant specialities when conducting a DRE, and suggest the range of pressure applied whilst palpating anatomy. SIGNIFICANCE: This research will be valuable in improving the design of haptics-based learning tools, as well as in encouraging reflection on palpation styles across different specialities to develop metrics of performance

    Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS)

    Get PDF
    Recommender systems have been based on context and content, and now the technological challenge of making personalized recommendations based on the user emotional state arises through physiological signals that are obtained from devices or sensors. This paper applies the deep learning approach using a deep convolutional neural network on a dataset of physiological signals (electrocardiogram and galvanic skin response), in this case, the AMIGOS dataset. The detection of emotions is done by correlating these physiological signals with the data of arousal and valence of this dataset, to classify the affective state of a person. In addition, an application for emotion recognition based on classic machine learning algorithms is proposed to extract the features of physiological signals in the domain of time, frequency, and non-linear. This application uses a convolutional neural network for the automatic feature extraction of the physiological signals, and through fully connected network layers, the emotion prediction is made. The experimental results on the AMIGOS dataset show that the method proposed in this paper achieves a better precision of the classification of the emotional states, in comparison with the originally obtained by the authors of this dataset.This research project is financed by theGovernment of Colombia, Colciencias and the Governorateof Boyac

    Simple, Robust, and Plasticizer-Free Iodide-Selective Sensor Based on Copolymerized Triazole-Based Ionic Liquid

    Get PDF
    Novel solid-contact iodide-selective electrodes based on covalently attached 1,2,3 triazole ionic liquid (IL) were prepared and investigated in this study. Triazole-based IL moieties were synthesized using click chemistry and were further copolymerized with lauryl methacrylate via a simple one-step free radical polymerization to produce a "self-plasticized" copolymer. The mechanical properties of the copolymer are suitable for the fabrication of plasticizer-free ion-selective membrane electrodes. We demonstrate that covalently attached IL moieties provide adequate functionality to the ion-selective membrane, thus achieving a very simple, one-component sensing membrane. We also demonstrate that the presence of iodide as the counterion in the triazole moiety has direct influence on the membrane's functionality. Potentiometric experiments revealed that each electrode displays high selectivity toward iodide anions over a number of inorganic anions. Moreover, the inherent presence of the iodide in the membrane reduces the need for conditioning. The nonconditioned electrodes show strikingly similar response characteristics compared to the conditioned ones. The electrodes exhibited a near Nernstian behavior with a slope of -56.1 mV per decade across a large concentration range with lower detection limits found at approximately 6.3 × 10(-8) M or 8 ppb. These all-solid-state sensors were utilized for the selective potentiometric determination of iodide ions in artificial urine samples in the nanomolar concentration range
    corecore