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ABSTRACT
Recommender systems have been based on context and content, now the technological challenge of making

personalized recommendations based on the user emotional state arises, through physiological signals

that are obtained from devices or sensors. This study applies the deep learning approach using a Deep

Convolutional Neural Network (DCNN), on a dataset of physiological signals (Electrocardiogram -ECG-

and Galvanic Skin Response -GSR-), in this case, the AMIGOS dataset. The detection of emotions is

done by correlating these physiological signals with the data of arousal and valence of this dataset, to

classify the affective state of a person. In addition, an application for emotion recognition based on classic

machine learning algorithms is proposed to extract the features of physiological signals, in the domain of

time, frequency and non-linear. This application uses a CNN for the automatic features extraction of the

physiological signals and through fully connected network layers (FCN), the emotion prediction is made.

The experimental results on the dataset AMIGOS, show that the method proposed in this study achieves a

better precision of the classification of the emotional states, in comparison with the originally obtained by

the authors of this dataset.

INDEX TERMS Emotion recognition, Deep Convolutional Neural Network, physiological signals,

machine learning, AMIGOS dataset.

I. INTRODUCTION
During the last two decades, the MIT’s affective computing

research group has aroused great interest in scientific and

academic communities that seek to improve the human emo-

tional experience with technology [1]. Some challenges focus

on deepening machine learning and deep algorithms, to en-

sure that the emotion recognition system has a high precision

and robustness in the processing of physiological data [2].

The emotions computational models [3] have been applied

to the recognition of affective states through physiological

measures, such as Heart Rate Variability (HRV), Blood Vol-

ume Pulse (BVP), Skin Temperature (SKT) [4], Electrocar-

diogram (ECG), and Electrodermal Activity (EDA) [5], that

come from the peripheral nervous system and central nervous

system.

Affective states are subjective experiences classified in va-

lence and arousal focuses [6]. Similarly, both focuses reflect

the degree to which a person incorporates emotions into their

conscious affective experience [7]. The stimulus of valence

focus is associated with pleasurable or unpleasant aspects, in

contrast with arousal focus that induces the activation or de-

activation of an emotion. Some databases correlate the affec-

tive states with physiological signals [8] [9] [10], which are

the result of emotions self-reported by people. The emotional

categories are established in a circular structural model that

contain basic emotions (for example, excited, happy, pleased,

relaxed, peaceful, calm, sleepy, bored, sad, nervous, angry,

and annoyed) to define the arousal and valence dimensions

[11] [12].

The emergence of sensors and wearable devices as mech-

anisms for the acquisition of physiological data of people

in their daily lives [13] has made possible the research in

the recognition of emotional patterns, for the improvement

of the user experiences in diverse contexts. Research on
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the management of the tourism industry highlights the im-

portance of this type of devices for emotional recognition,

such as the improvement of the tourism experience through

the services personalization [14] [15], where the tourist’s

expectation is analyzed in three phases (before, during and

after the tourist visit) for different dimensions or tourist

activities. With regard to the dimension of the tourist at-

traction, the recommendation systems are an important tool

before visiting the tourist destination. In the same way, the

World Tourism Organization recognizes that in the market

of the increasingly competitive tourist destination, the tourist

attractions are more inclined towards the emotional benefits

than the physical features and price of the destination [16].

For affective recognition, this paper focuses on exploring

models of Deep Convolutional Neural Network (DCNN) [17]

in comparison with traditional machine learning algorithms,

which can be used as a framework for the emotions de-

tection. The experimental tests for the classification of the

emotional dimensions of arousal and valence were made with

the dataset AMIGOS [10]. For the purpose of transforming

the physiological signals, the QRS detection methods in [18]

were applied in the prepocesing stage, which provides the

RR intervals of the ECG. Likewise, the temporal series of the

Skin Conductance Response (SCR) peaks of the GSR signals

[19] were identified. A determining factor in the effectiveness

of the emotion prediction is defined in the extraction and

correlation of the features of the physiological signals ECG

and GSR.

In this study, the authors present an analysis of the statis-

tical techniques used for the manual features extraction of

the physiological signals with respect the automatic features

extraction that is better correlated with the states emotional.

This paper is organized as follows: section 2 presents a

review of literature related to the emotions detection from

physiological signals. Section 3 describes the AMIGOS

dataset used in the process of affective states recognition.

Section 4 provides methods based on automatic learning

and deep learning algorithms for the emotions classification.

Finally, sections 5 and 6 present the results and conclusions

of the experiment generated during this research.

II. RELATED WORK
This section presents researches on datasets for the multi-

modal emotions recognition and the affective states detection

through physiological responses.

A. MULTIMODAL DATASET
Emotion is the degree to which a person reacts to changes

in the context as a response to the elicitation that manifests

itself in their affective states [5]. People use the senses to

express the emotion experienced through gestures, speech or

physiological responses. The correlation between emotions

and physiological data determines the multimodal affect

recognition. The contents of images [20], movie clips [21]

and music videos [8] have been used to induce emotions that

users appraisal with explicit measurements [22], in order to

verify the arousal and valence levels. On the other hand, emo-

tions elicited by multimedia content are implicitly recognized

by means of physiological and brain signals, enabling the

consolidation of a multimodal affective dataset that compares

the affective response of people [23].

Precisely, the dataset ASCERTAIN [24] effects the person-

ality and emotion recognition induced by 36 movie clips that

have a duration of 58 to 128 seconds, with the registration

of physiological signals (ECG and GSR), EEG and activity

facial of 58 participants. AMIGOS dataset [10] detects the

mood, affect and personality of 40 participants with the

registration of their EEG, ECG, and GSR signals, as a result

of the stimulus caused during the viewing of short and long

videos.

Abadi et al. [25] for the affect detection analyzes the phys-

iological response of the ECG, Electrooculogram (EOG) and

trapezius-Electromyogram (EMG), and contrasts the brain

signals (EEG and Magnetoencephalogram) of 30 participants

who watched 36 movie clips from 80 seconds and 40 seg-

ments of one-minute music videos that are part of the DEAP

dataset [8]. In the emotional state’s recognition of 32 par-

ticipants, DEAP includes physiological signals (GSR, BVP,

SKT, EOG, and EMG) and EEG. Similarly, the multimodal

database MAHNOB-HCI [26] contains physiological signals

(ECG, GSR, SKT, and Respiration), eye gaze and EEG

from 27 participants, who evaluated the emotion through

various stimuli (20 emotional videos, 14 short videos, and

28 images).

Both DEAP and MANNOB-HCI demonstrate better EEG

effectiveness in predicting arousal and physiological signals

obtained a better outcome with valence. AMIGOS has the

same behavior with EEG signals, but unlike [8] and [26], it

obtained better f1-score outcome with arousal. The physio-

logical features in DECAF had a better arousal recognition

in the movie clips and a better valence outcome in the music

clips. In ASCERTAIN the multimodal results (ECG and

GSR) had a better performance in contrast to the EEG.

The works related to the affective recognition establish

the experimentation of the users with diverse stimuli and the

influence of the emotions in their physiological behaviors,

therefore need arises to identify emotional patterns in the

physiological features that improve the detection of the states

affective. Moreover, section III describes the experiment with

short videos of the AMIGOS affective dataset, used for the

emotions recognition with the machine learning approaches

proposed in this survey.

B. EMOTIONAL STATES DETECTION
The publications related to the affective recognition from

physiological data have the purpose of constructing reliable

models supported by techniques and machine learning algo-

rithms, to discover patterns of the emotional states that are

hidden in the physiological signals. Various methodologies

have been explored for the preprocessing of data, the extrac-

tion, and selection of physiological features, as stages prior

to the classification of emotion.
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Some studies for the affect recognition of have imple-
mented supervised classification approaches [27] such as
k-Nearest Neighbor (k-NN) [28] [18], and Support Vector
Machine (SVM) [9] [29]. The researchers defined keywords
to validate the user’s emotional responses through the va-
lence and excitation model. The physiological signals are
processed by sliding window technique [30] and the process
of reducing the dimensionality of the features is based on the
Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) techniques [29].

On the other hand, the Deep Learning approach applies
non-linear transformations to physiological signals for the
detection of features of human emotional behavior. In this
context, CNN [31] techniques have been used for the au-
tomatic extraction of SCR and BVP features and 70 to
75% accuracy results have been obtained in the prediction
of emotion (relaxation, anxiety, excitement, and fun). Other
investigations validated the performance of affection models
with deep learning using the multimodal DEAP database [32]
[33] and adopted a multiple-fusion-layer-based ensemble
classifier of stacked autoencoder (MESAE) framework, to
extract the physiological features that were merged into an
SAE network. The accuracy results in arousal and valence
were 0.83 and 0.84 respectively.

Regarding to semi-supervised learning methodologies
SAE was integrated with Deep Belief Network (DBN) using
a Bayesian inference classification based decision fusion
method [34], results of arousal were obtained in 73.1%
and valence in 78.8%. In [35] they defined a hybrid model
composed of a CNN and a Recurrent Neural Network (RNN).
As a requirement for the sequential processing in the CNN,
the features were extracted and the prediction was made in
the Long Short-Term Memory (LSTM) unit of the RNN.
This model obtained an accuracy of 74.1% for arousal and
72.1% for valence. The models based on CCN and DNN
[36] showed better results in the affective classification when
using the image domain of the EEG signals [37].

The related works deal with the trend of deep learning
for the emotions detection related to heart disease, mental
disorder, and stress. However, to validate the affective models
there is a limitation in the access to small physiological
datasets [38] or there is a problem in obtaining correct
data [17]. Therefore, it is necessary to publish repositories
of physiological datasets, so that researchers can test the
classification models that can be used in the personalization
of tourist services or any domain.

III. AMIGOS DATASET
The validation of the emotional classifier is done with A
dataset for Mood, personality and affect research on Indi-
viduals and GrOupS (AMIGOS) [10]. This dataset is the
result of two experiments related to the multimodal study
of emotional responses. In the first, 40 participants watched
16 short videos (duration < 250 seconds), in the second,
17 people individually and five groups of four participants
watched four long videos (duration > 14 minutes). In both

TABLE 1. Classification of the 16 short videos with the physiological signals
instances that were recorded during the presentation of the stimuli of each
subject [10].

Video Instances Duration Quadrant Film Clips
10 12225 96 LAHV August Rush 6
13 7229 57 LAHV Love Actually 4
138 15610 122 LALV The Thin Red Line 7
18 10575 83 LAHV House of Flying Daggers 5
19 16106 126 LALV Exorcist 8
20 8335 65 LALV My girl 5
23 14265 112 LALV My Bodyguard 7
30 9717 76 HALV Silent Hill 5
31 19886 155 HALV Prestige 9
34 8417 66 HALV Pink Flamingos 5
36 8698 68 HALV Black Swan 5
4 11621 91 HAHV Airplane 6
5 14347 112 HAHV When Harry Met Sally 7
58 8181 64 LAHV Mr Beans Holiday 4
80 13047 102 HAHV Love Actually 6
9 9630 75 HAHV Hot Shots 5

experiments, neuro-physiological signals were captured from
the subjects during the elicitation of emotion [21].

Electroencephalogram (EEG) signals were recorded using
the Emotiv EPOC Neuroheadset containing 14 electrodes for
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and
AF4 channels. The physiological signals were recorded with
the ECG Shimmer 2R5 platform from three electrodes for the
Electrocardiogram (ECG right and ECG left channels) and
two electrodes for the Galvanic Response of the Skin (GSR
channel). The physiological data were preprocessed with a
sampling frequency of 128 Hz.

The affective levels of the participants were reported in a
self-assessment (arousal, valence, dominance, liking, famil-
iarity and seven basic emotions) and in an external annotation
(arousal and valence). The five dimensions are measured in
the scale of 1(low) to 9 (high), the basic emotions (neutral,
disgust, happiness, surprise, anger, fear, and sadness) are
binary values. Specifically, this study focuses on the experi-
ment with the 16 short videos, due to the fact that a long video
is more likely to elicit diverse emotional states according
to the scenes presented. That is, the emotion appraisal is
determined by the changes that the subject can experience in
the context. The experienced emotions can change through a
process of regulating emotion, which determines the effects
on human behavior [39].

The classification of the 16 short videos by quadrants
of valence and arousal (high and low) was performed by
[10] according to the elicitation of the emotion, for each
participant 94 clips were recorded according to the duration
of each video (see table 1). The first 20 seconds of each clip,
included five seconds from the beginning of the stimuli, then
were generated non overlapping intermediate segments of 20
seconds, excepting for the final clip.

Figure 1 shows the distribution of the valence and arousal
mean of the self-assessing participants during the experi-
ment, 40 * 16 = 640 instances are available. However, it is
observed that the videos 20 and 23 tend to a neutral value
of arousal, that is, the intensity of the emotion is not so
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FIGURE 1. Distribution of mean ratings of valence and arousal of
self-assessment of the 16 short videos. Scale from -1 to 1.

marked. Therefore, using the k-means classification method,

we define the four clusters with the thresholds for the labels

of arousal and valence [32]. Figure 2 shows the clusters with

a threshold of (5, 5) for the two or four classes of low or

high emotion and were obtained with the K-means clustering

method [27]. In the current study, the emotional classification

is defined as low and high subjective scale for the valence and

arousal dimensions.

IV. PROPOSED METHODS
Affective computing involves the design of machine learning

models to discover physiological patterns of affective states

from datasets. In this research, we propose the validation of

supervised learning algorithms and Deep Learning for the

efficient emotion detection. Therefore, in figure 3, it is shown

the system with the components to load the dataset in a data

frame, as a requirement for the preprocessing of the ECG

and GSR signals. Then, the feature extraction stage can be

developed explicitly or implicitly. The first uses hand-crafted

functions to obtain features in the time or frequency domain,

which can be selected with machine learning algorithms. The

second, with deep learning, extracts automatic representa-

tions of the features. Finally, the models are trained and tested

with algorithms from the two approaches.

A. MACHINE LEARNING
1) Data preprocessing
As a previous step to the features extraction of the physiolog-

ical signals, the detection of peaks of the ECG and GSR sig-

nals is performed, because the emotions generate significant

changes in these segments. The Heart Rate Variability (HRV)

analysis is an affective diagnostic tool to determine the beat

TABLE 2. Notation of features extracted from ECG and GSR signals [42], [45]

Signal Features group Description of the extracted features
Time Domain (1 -
13)

meanNN, medianNN, standardDevia-
tionNN, rmSSD, pnn50, pnn20, coeff-
VariationSD, medianADNN, coeffVari-
ationNN, mCoeffVariationNN, shan-
nonEntropy, HRVtriangular, and nu-
mArtifacts.

ECG Frequency
Domain (14 - 24)

peakHF, hfTotalPowerRatio, normal-
izedHF, peakLF, lfhfRatio, lfTotalPow-
erRatio, normalizedLF, totalPower, ulf-
Peak, vhfPeak, and vlfPeak.

Non Linear (25 -
33)

correlation dimension, entropy (SVD,
HF, LF, VLF, and shannon), fractal di-
mension (higushi and petrosian), and
fisher information.

GSR Mean, standard
deviation, max,
min, kurtosis, and
skew (34 - 87)

EDA at apex, SCR width, amplitude, de-
cay time, half amplitude, half amplitude
(index and indexpre), latency, and rise
time.

to beat interval (RR interval) [18]. The values between a RR

interval correspond to the time between two peaks R, which

is calculated through a standard wave of the QRS complex.

The ECG signal is transformed with the PanTomkins QRS

detection algorithm proposed in [40]. The signal is filtered

to reduce the noise with cutoff frequencies of 0.5 and 15 Hz

and uses an adaptive threshold for the detection of the QRS

complex (see figure 4).

Similarly, the GSR signal is preprocessed using bandpass

filters to reduce noise with cutoff frequencies of 0.05 and 19

Hz [41]. Then it is resampled with a digital phase filter of 10

Hz. During SCR peak detection a standard method is used

that identifies the max, min and offset indexes of the signal

GSR [42]. So, the threshold of the amplitude is determined

and the features between SCR peaks are calculated (see figure

5).

2) Extraction and selection of features
The affect detection requires an adequate features extraction

of the signals, which correlate with the emotional states

recorded by the participants in the self-assessment. That is,

the relationship between features and emotions determines

the physiological reaction [43] and is taken as input to the

predictor. Parametric measurements of the ECG signals in

the time domain quantify the variability of interbeat intervals

(IBI) measurements successive. The power distribution is

determined in the frequency domain and the unpredictability

of a series IBI is quantified in the non-linear according to [44]

[45].

For the case of GSR signals, are extracted statistics in

the time domain related to amplitude, rise time, decay time,

latency, mean amplitude indexes and SCR peak indexes.

Because each GSR signal produces a set of measurements by

the amount of detected SCR peaks, some measures of central

tendency, dispersion variation and distribution are applied. In

Table 2, the features generated from the peaks of the ECG

and GSR signals are described.

After the process of extracting features, machine learning
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FIGURE 2. Clustering of valence and arousal of self-assessment of the short videos. Scale from 1 to 9.

algorithms are used to filter the redundant features that can

cause overfitting in the classification model [46].

B. DEEP CONVOLUTIONAL NEURAL NETWORK

Deep learning is an area of machine learning based on algo-

rithms and techniques for modeling high-level abstractions in

datasets [47], such as the patterns recognition in images, text

or emotions. The learning levels take as input the results of

the previous levels, which are transformed into insights, to

train and validate the classification model.

The DCNN architecture proposed for the emotion detec-

tion system was adapted from the work of [48], with the

Keras framework [49]. The DCNN involves a sequence of

CNN layers and pooling layers to automatically extract fea-

tures from the physiological signals. Fully connected layers

are located in front of CNN, operate on all nodes and are used

to predict the affective state.

In this study, CNN layers are considered fuzzy filters

[50] that reduce noise and discover particular morphological

patterns in the R peaks of the ECG signals and the SCR peaks

of the GSR signals. Initially, the transformation implemented

by the neuronal layers is parameterized by its weight w, since

the neurons learn to discover the correct values (convolution

kernel), without affecting the behavior of the other layers

[51]. That is, in the 1D convolutional layer the features vector

of the physiological signals resulting from the transformation

of the input data x, is defined in equation 1.

xl
i = f

⎛
⎝∑

j

wl
ijx

l−1
j + bli

⎞
⎠ (1)

Where xl−1
j represents the input vector to the convolu-

tional function, wl
ij denotes the kernel weight between the

ith and jth neurons of the layers l and l − 1 respectively. bli
is the bias coefficient of the neuron ith in the layer l and xl

i

indicates the output of the convolutional layer.
In the CNN layers and fully connected layers, the acti-

vation function of the Rectified Linear Unit (ReLU) is set,

which handles a threshold of 0 for the negative values. This

ReLU(x) function is calculated as equation 2:

f(x) = max(0, xi) (2)

The max-pooling layers are alternated between the CNN

layers because of to segment a convolutional region that

can increase the robustness of the features and reduce the

dimensionality of the physiological signals vector. As a regu-

larization technique to decrease the overfitting in the layers

of the neural network, the dropout with a value of 0.5 is

added. The output layers of the fully connected network

are configured with the softmax classifier, with the purpose

that the hidden layers verify the probability of predicting the

emotion.

VOLUME 4, 2016 5
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FIGURE 3. Software components for the emotion recognition system, with a deep learning approach and classic machine learning algorithms.

FIGURE 4. Detection of RR interval in the ECG signal. Dataset AMIGOS [10], participant 1, video 10.

During the supervised training, the loss is minimized with
the Root Mean Square Propogation (RMSProp) [52] opti-
mizer, since it adjusts the learning rate adaptively. Initially,
the learning rate is set to 0.001. Once the model is executed,
the knowledge base is consolidated between the vector of
physiological features and the class vector. Then, to eval-

uate the emotion recognition, in the fully connected layer
the cross-entropy loss function is set, which determines the
degree of correspondence of the target output vector yi, with
the predicted output vector cj , as follows in equation 3:
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FIGURE 5. Detection of peaks in the GSR signal. Dataset AMIGOS [10], participant 1, video 10.

E =
1

2

N∑
j=1

(yi − cj)
2

(3)

The emotion recognition model based on deep learning

algorithms is shown in figure 6. The structure is defined by an

input layer that connects the vector of physiological features

with the neurons of the first convolutional layer. Which, in

turn, connects with three consecutive convolutional layers, to

extract the features of the ECG and GSR signals. further, it

is appreciated the transformation process of the input vectors

in local patches inside a convolution window [51]. Each 1D

CNN contains a sequence of temporal data for the recognition

of local patterns, which can be learned from the physiological

signals morphology. The functionality of the CNN layers is

given by the convolution kernel that obtains the local patches

and the Max pooling extracts the windows from the feature

vectors to generate the downsampling output vector.

The vector resulting from physiological features extraction

state is sent to the input neurons of the three FCN, to perform

the training and testing process of the model. The last FCN

layer is used to predict the affective state.

V. EXPERIMENTAL RESULTS
Emotion recognition models are tested through the AMIGOS

dataset. In the first validation with the deep learning algo-

rithms, the automatic extraction of the features is performed

from the R peaks and SCR peaks. In contrast, with the in-

stances of physiological signals that are loaded directly from

the data frame to the convolutional layers. The second experi-

ment is based on some classic machine learning algorithms to

extract, select and detect emotions. Each physiological signal

is made up of 640 instances (40 participants * 16 videos), but

at the time of consolidating the data frame, null values were

found, therefore, it was reduced to 603 instances.

A. EMOTION DETECTION WITH DCNN
During the experiment, the configuration parameters previ-

ously explained were defined for the training and testing of

the deep learning model. Once the physiological signals have

been preprocessed, it is defined a segment of length of 200

R peaks for the input vector of the ECG signal. For the GSR

signal, it is specified an input segment of 20 SCR peaks. The

values of each vector were normalized with the calculation

TABLE 3. The classification accuracy for the CNN model

Physiological data Arousal Valence
Signal Input lenght Train Acc. Test Acc. Train Acc. Test Acc.

ECGL 200 0.83 0.82 0.75 0.71
ECGL-ECGR 200 0.83 0.76 0.79 0.75
ECGL 15000 0.82 0.82 0.66 0.72
GSR 15000 0.66 0.69 0.66 0.67
GSR 20 0.71 0.71 0.73 0.75

of the mean and the standard deviation of all the points of the

signal segment. The sizes of the kernel and the filter of the

CNN layers affect the features detection that is represented

in a convolution vector.

For the ECG vector, the kernel size for the four convolu-

tional layers is defined at 15, 10, 5 and 1. In GSR vector,

it was configured at 10, 3, 1 and 1. The max-poling sizes

were defined in 5, 2, 2 and 2,1,1 respectively for the ECG and

GSR signals. Kernel filter sizes were set to 256. The epochs

number used to train the model was 200. Table 3 shows the

accuracy results that were obtained for the best model during

training and testing.

In the experimentation process, two types of input data

segments were configured for each ECG signal. The first was

transformed to 200 R peaks, the second was normalized and

segmented to 15.000 points. In the case of the ECGL signal,

the results obtained for the arousal dimension were simi-

lar, although different processing techniques were applied,

mainly in terms of dimensionality reduction.

Since the length of the segment of the ECGL signal is

not significant, it is evident that the convolutional layers

extract emotionally discriminatory features for the detection

of arousal levels (low and high). With the valence dimension,

better results were obtained when the ECG signals were

integrated (ECGL and ECGR), than when using only the

ECGL signal. In a similar way for the GSR signal, regarding

the type of segments that were used during the experiment, it

can be seen that with the length of 20 SCR peaks, the valence

levels (low and high) have a better performance.

B. DCNN VS SHALLOW MACHINE LEARNING
ALGORITHMS
In this section, we compare the performance results in the

prediction of the affective states originally obtained by the

authors of the dataset AMIGOS [10], with the algorithms

VOLUME 4, 2016 7
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FIGURE 6. An schema of emotion recognition process based in deep learning.

TABLE 4. Performance comparison of DCNN with classical ML algorithms for
emotion recognition based on ECG signals

ECGL Classifier Arousal Valence
Accuracy F1-Score Accuracy F1-Score

Naive Bayes [10] 0.59 0.57
Nearest Neighbors 0.69 0.66 0.58 0.57
Linear Discriminant Analysis 0.72 0.63 0.67 0.65
Linear Support Vector 0.68 0.60 0.61 0.55
Multi-Layer Perceptron 0.68 0.59 0.61 0.51
AdaBoost 0.70 0.66 0.61 0.58
Random Forest 0.68 0.67 0.59 0.59
DCNN 0.81 0.76 0.71 0.68

proposed in this study. Unlike CNN, the features of the
physiological signals of the ECG and GSR were extracted
manually, as explained in the section on extraction and se-
lection of features. In most cases with machine algorithms,
similar prediction results were obtained or a little higher than
the previous study of [10].

Therefore, with DCNN a better performance in arousal
recognition is achieved through the ECGL signals (see table
4), in contrast to the GSR signal that shows better results in
valence prediction (see table 5).

Taking into account the physiological data limitation of
the AMIGOS dataset, it was proposed to validate the deep
learning model with the data of the EEG and ECG signals.
Each signal was segmented and normalized by 10,000 points.

TABLE 5. Performance comparison of DCNN with classical ML algorithms for
emotion recognition based on GSR signals

GSR Classifier Arousal Valence
Accuracy F1-Score Accuracy F1-Score

Naive Bayes [10] 0.54 0.53
Nearest Neighbors 0.68 0.64 0.69 0.68
Linear Discriminant Analysis 0.67 0.61 0.64 0.55
Linear Support Vector 0.69 0.56 0.68 0.55
Multi-Layer Perceptron 0.68 0.60 0.64 0.55
AdaBoost 0.64 0.59 0.66 0.65
Random Forest 0.58 0.58 0.64 0.64
DCNN 0.71 0.67 0.75 0.71

For the training, 90% of the data was used and the rest for
the testing, that is, 965 instances were assigned to validate
the model. Due to the size of the dataset, the processing of
each epoch lasted 550 seconds, that is, in comparison with
the other tests, the computational effort was increased to
generate a more robust model. The categorical recognition
of emotions was evaluated from 4 classes (HALV, HAHV,
LALV and LAHV).

The figure 7 shows the exponential behavior of the ac-
curacy during the training and testing for the 500 epochs.
Similarly, in the figure 8 the values of loss are displayed
during the learning that is decreasing for each epoch. The
confusion matrix is showing the results of prediction for the
four classes of arousal and valence respectively (see figure 9).
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The unification of the EEG and ECG signals ratifies the trend
of the prediction results for arousal compared to valence
because better results were obtained when the values of the
labels are high. Possibly, by the subjective evaluation of the
participants in the self-assessment of the emotion elicitation
during the experiments of the short videos.
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FIGURE 7. Accuracy result for DCNN model, using the EEG and ECG signals
for the emotion recognition. [10], participant 1, video 10.
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FIGURE 8. Loss result for DCNN model, using the EEG and ECG signals for
the emotion recognition.

Table 6 shows the comparative results of studies similar
to this research. In [38] describes a recognition method of
arousal from ECG signals of various datasets represented in
a common spectrum-temporal space to train a deep neural
network. Derived from the results of the affect prediction
with DECAF, it is can conclude that the stimulus is an
indispensable factor to induce emotion. Also, other studies
[34] [32] [36] for the arousal and valence detection used
diverse EOG, EMG and, EEG signals from DEAP dataset,
and they have obtained the same or better results than the
reported in this work (see table 3). Unlike AMIGOS, DEAP
dataset is one of the most explored datasets for emotional
recognition, since different machine learning models have
been developed for the automatic extraction of physiological
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FIGURE 9. Normalized confusion matrix for the prediction of four classes.

TABLE 6. Accuracy comparison with other datasets

Research Dataset Arousal Valence

DNN [38]

DEAP 0.64
MAHNOB 0.66
ASCERTAIN 0.7
DECAF movie 0.65
DECAF music 0.79

SAE and DBN [34]
DEAP

0.73 0.78
MESAE [32] 0.84 0.83
CNN [36] 0.73 0.81
Our work (DCNN) Amigos 0.76 0.75

features, features fusion and classification of the affective
state. Hence, the performance outcome of emotional recog-
nition models are subject to the number of physiological
signals, the stimuli selection to elicit emotion, the reliability
of the emotional assessment labels (self-evaluation) and the
participants’ number in the experiment.

VI. CONCLUSION
The convolutional networks in comparison with the classic
algorithms of machine learning demonstrated a better per-
formance in the emotion detection in physiological signals,
in spite of being conceived for the objects recognition in
images. The preprocessing of the peaks of the ECG and
GSR signals as an entry vector to the CNN, made possible
the identification of morphological features suitable for the
affective state prediction. The experimental results validated
the proposed methods and improved the performance in the
emotion classification for the Dataset AMIGOS.
Physiological datasets with a large number of instances are
optimal for the proposed experiments since these directly
influence the emotion prediction, a the greater the number
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of instances, the more effective the model. Consequently,
several annotations of arousal and valence must be recorded,
since, when subjecting a participant to the stimulus of a short
video, it can manifest different levels of emotion during of
experiment.
The future work of this research consists in to apply these
computational models to data acquired with wearable de-
vices, for the recognition of emotion from physiological
signals.
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