270 research outputs found

    RNA and DNA Bacteriophages as Molecular Diagnosis Controls in Clinical Virology: A Comprehensive Study of More than 45,000 Routine PCR Tests

    Get PDF
    Real-time PCR techniques are now commonly used for the detection of viral genomes in various human specimens and require for validation both external and internal controls (ECs and ICs). In particular, ICs added to clinical samples are necessary to monitor the extraction, reverse transcription, and amplification steps in order to detect false-negative results resulting from PCR-inhibition or errors in the technical procedure. Here, we performed a large scale evaluation of the use of bacteriophages as ICs in routine molecular diagnosis. This allowed to propose simple standardized procedures (i) to design specific ECs for both DNA and RNA viruses and (ii) to use T4 (DNA) or MS2 (RNA) phages as ICs in routine diagnosis. Various technical formats for using phages as ICs were optimised and validated. Subsequently, T4 and MS2 ICs were evaluated in routine real-time PCR or RT-PCR virological diagnostic tests, using a series of 8,950 clinical samples (representing 36 distinct specimen types) sent to our laboratory for the detection of a variety of DNA and RNA viruses. The frequency of inefficient detection of ICs was analyzed according to the nature of the sample. Inhibitors of enzymatic reactions were detected at high frequency in specific sample types such as heparinized blood and bone marrow (>70%), broncho-alveolar liquid (41%) and stools (36%). The use of T4 and MS2 phages as ICs proved to be cost-effective, flexible and adaptable to various technical procedures of real-time PCR detection in virology. It represents a valuable strategy for enhancing the quality of routine molecular diagnosis in laboratories that use in-house designed diagnostic systems, which can conveniently be associated to the use of specific synthetic ECs. The high rate of inhibitors observed in a variety of specimen types should stimulate the elaboration of improved technical protocols for the extraction and amplification of nucleic acids

    The Chop Gene Contains an Element for the Positive Regulation of the Mitochondrial Unfolded Protein Response

    Get PDF
    We have previously reported on the discovery of a mitochondrial specific unfolded protein response (mtUPR) in mammalian cells, in which the accumulation of unfolded protein within the mitochondrial matrix results in the transcriptional activation of nuclear genes encoding mitochondrial stress proteins such as chaperonin 60, chaperonin 10, mtDnaJ, and ClpP, but not those encoding stress proteins of the endoplasmic reticulum (ER) or the cytosol. Analysis of the chaperonin 60/10 bidirectional promoter showed that the CHOP element was required for the mtUPR and that the transcription of the chop gene is activated by mtUPR. In order to investigate the role of CHOP in the mtUPR, we carried out a deletion analysis of the chop promoter. This revealed that the transcriptional activation of the chop gene by mtUPR is through an AP-1 (activator protein-1) element. This site lies alongside an ERSE element through which chop transcription is activated in response to the ER stress response (erUPR). Thus CHOP can be induced separately in response to 2 different stress response pathways. We also discuss the potential signal pathway between mitochondria and the nucleus for the mtUPR

    Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes

    Get PDF
    The mechanism of mitochondrial DNA replication is a subject of intense debate. One model proposes a strand-asynchronous replication in which both strands of the circular genome are replicated semi-independently while the other model proposes both a bidirectional coupled leading- and lagging-strand synthesis mode and a unidirectional mode in which the lagging-strand is initially laid-down as RNA by an unknown mechanism (RITOLS mode). Both the strand-asynchronous and RITOLS model have in common a delayed synthesis of the DNA-lagging strand. Mitochondrial DNA is replicated by a limited set of proteins including DNA polymerase gamma (POLG) and the helicase Twinkle. Here, we report the effects of expression of various catalytically deficient mutants of POLG1 and Twinkle in human cell culture. Both groups of mutants reduced mitochondrial DNA copy number by severe replication stalling. However, the analysis showed that while induction of POLG1 mutants still displayed delayed lagging-strand synthesis, Twinkle-induced stalling resulted in maturated, essentially fully double-stranded DNA intermediates. In the latter case, limited inhibition of POLG with dideoxycytidine restored the delay between leading- and lagging-strand synthesis. The observed cause-effect relationship suggests that Twinkle-induced stalling increases lagging-strand initiation events and/or maturation mimicking conventional strand-coupled replication

    2nd International External Quality Control Assessment for the Molecular Diagnosis of Dengue Infections

    Get PDF
    Dengue viruses (DENV) are the most widespread arthropod-borne viruses which have shown an unexpected geographic expansion, as well as an increase in the number and severity of outbreaks in the last decades. In this context, the accurate diagnosis and reliable surveillance of dengue infections are essential. The laboratory diagnosis of dengue relies on the use of several methods detecting markers of DENV infection present in patient serum. Molecular diagnosis methods are usually rapid, sensitive, and simple when correctly standardized. Moreover, PCR-based diagnosis techniques are able to readily detect DENV during the acute phase of the disease and may assume an important role in dengue diagnosis and surveillance. Different reverse transcriptase PCR (RT-PCR) methods have been developed and are currently available and should be standardized in each laboratory to maintain high quality performance. In this work an External quality assessment (EQA) activity has been carried out to evaluate the accuracy and quality of laboratory data for the molecular diagnosis and surveillance of dengue, which involved worldwide dengue reference laboratories. In conclusion, RT-PCR techniques for dengue diagnosis applied by the participating laboratories demonstrated the need of further improvement in most laboratories

    UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?

    Get PDF
    Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. We used a Surface Plasmon Resonance (SPR)-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM

    Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2

    Get PDF
    The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin.These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia

    Dengue 1 Diversity and Microevolution, French Polynesia 2001–2006: Connection with Epidemiology and Clinics

    Get PDF
    The molecular characterization of 181 serotype 1 Dengue fever (DENV-1) viruses collected regularly during the 2001–2006 period in French Polynesia (FP) from patients experiencing various clinical presentations revealed that the virus responsible for the severe 2001 outbreak was introduced from South-East Asia, and evolved under an endemic mode until a new epidemic five years later. The dynamics of DENV-1 epidemics in FP did not follow the model of repeated virus introductions described in other South Pacific islands. They were characterized by a long sustained viral circulation and the absence of new viral introduction over a six-year period. Viral genetic variability was not observed only during outbreaks. In contrast with conventional thinking, a significant part of DENV-1 evolution may occur during endemic periods, and may reflect adaptation to the mosquito vector. However, DENV-1 evolution was globally characterized by strong purifying selection pressures leading to genome conservation, like other DENV serotypes and other arboviruses subject to constraints imposed by the host-vector alternating replication of viruses. Severe cases—dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS)—may be linked to both viral and host factors. For the first time, we report a significant correlation between intra-host viral genetic variability and clinical outcome. Severe cases were characterized by more homogeneous viral populations with lower intra-host genetic variability

    Virus-Like Particles of SARS-Like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells

    Get PDF
    The pathogenesis of SARS coronavirus (CoV) remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S) protein of SARS-like coronavirus (SL-CoV) isolated from bats (vAcBS) and the envelope (E) and membrane (M) proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs) as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS) into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-α in immature dendritic cells (DCs). Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-α. Further study indicated that IFN-γ+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS) and the other two from human SARS-CoV (E and M), activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV

    The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    Get PDF
    Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers
    corecore