513 research outputs found

    Fragile entanglement statistics

    Get PDF
    If X and Y are independent, Y and Z are independent, and so are X and Z, one might be tempted to conclude that X, Y, and Z are independent. But it has long been known in classical probability theory that, intuitive as it may seem, this is not true in general. In quantum mechanics one can ask whether analogous statistics can emerge for configurations of particles in certain types of entan- gled states. The explicit construction of such states, along with the specifi- cation of suitable sets of observables that have the purported statistical properties, is not entirely straightforward. We show that an example of such a configuration arises in the case of an N-particle GHZ state, and we are able to identify a family of observables with the property that the associated mea- surement outcomes are independent for any choice of 2, 3, 1⁄4, N - 1 of the particles, even though the measurement outcomes for all N particles are not independent. Although such states are highly entangled, the entanglement turns out to be ‘fragile’, i.e. the associated density matrix has the property that if one traces out the freedom associated with even a single particle, the resulting reduced density matrix is separable

    (3R,4S,5S,8S,10R,13R)-3-Hy­droxy­kaura-9(11),16-dien-18-oic acid

    Get PDF
    The title compound, C20H28O3, was isolated during our investigation into the chemical composition and pharmacological activity of Centipeda cunninghamii (DC.) A. Braun & Asch. (Asteraceae). The enanti­opure compound, a diterpene with a carbon skeleton, is composed of three six- and one five-membered rings in chair, twist-boat, half-chair and envelope conformations, respectively. Each mol­ecule makes one intra- and one inter­molecular O—H⋯O hydrogen bond in the crystal lattice, forming hydrogen-bonded chains along [010]. The absolute configuration of the compound was assigned on the basis of optical rotation measurements

    Thiarubrine A, a bioactive constituent of Aspilia (Asteraceae) consumed by wild chimpanzees

    Full text link
    Two African species of Aspilia (Asteraceae), which are used medicinally by man and which are eaten by wild chimpanzees in an unusual manner, were found to contain the potent antibiotic thiarubrine A as a major leaf phytochemical. Its presence in leaf material strengthens the view that the feeding behavior of wild chimpanzees is related to special physiological or pharmacological effects on the animals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42789/1/18_2005_Article_BF02004537.pd

    The Distributional Effect of Events on Rural and Urban Households in China

    Get PDF
    International tourism is considered an effective means of economic development. However, the effects of tourism are not evenly distributed between rural and urban households in China. In the wake of significant socioeconomic events, the uneven distribution of the economic effects has huge welfare implications for Chinese households. This study is the first attempt to evaluate the distributional effect of two large, recent, sequential events on China’s rural and urban households. It adopts an innovative approach that combines an econometric model and a two-household computable general equilibrium model. The results show that in terms of welfare, urban households were more adversely affected by the events than rural households. To mitigate the loss of welfare, measures should be taken to continually promote China as a destination and attract tourists after such events occur. Meanwhile, training and education should be made more accessible to rural households to increase their job opportunities

    Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)

    Get PDF
    Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar ‘Hayward’ and its male pollinator ‘Chieftain’. Terpene volatile levels showed a profile dominated by the sesquiterpenes α-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-β-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a ‘Hayward’ petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-α-farnesene and small amounts of (E)-β-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers

    Potent cytotoxic effects of Calomeria amaranthoides on ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer remains the leading cause of death from gynaecological malignancy. More than 60% of the patients are presenting the disease in stage III or IV. In spite of combination of chemotherapy and surgery the prognosis stays poor for therapy regimen.</p> <p>Methods</p> <p>The leaves of a plant endemic to Australia, <it>Calomeria amaranthoides</it>, were extracted and then fractionated by column chromatography. <it>In vitro </it>cytotoxicity tests were performed with fractions of the plant extract and later with an isolated compound on ovarian cancer cell lines, as well as normal fibroblasts at concentrations of 1-100 μg/mL (crude extract) and 1-10 μg/mL (compound). Cytotoxicity was measured after 24, 48 and 72 hours by using a non-fluorescent substrate, Alamar blue.</p> <p><it>In vivo </it>cytotoxicity was tested on ascites, developed in the abdomen of nude mice after inoculation with human OVCAR<sub>3 </sub>cells intraperitoneally. The rate of change in abdomen size for the mice was determined by linear regression and statistically evaluated for significance by the unpaired t test.</p> <p>Results</p> <p>Two compounds were isolated by chromatographic fractionation and identified by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and mass spectrometry analyses, EPD, an α-methylene sesquiterpene lactone of the eremophilanolide subtype, and EPA, an α-methylene carboxylic acid.</p> <p>Cytotoxicity of EPD for normal fibroblasts at all time points IC<sub>50 </sub>was greater than 10 μg/mL, whereas, for OVCAR<sub>3 </sub>cells at 48 hours IC<sub>50 </sub>was 5.3 μg/mL (95% confidence interval 4.3 to 6.5 μg/mL).</p> <p>Both, the crude plant extract as well as EPD killed the cancer cells at a final concentration of 10 μg/mL and 5 μg/mL respectively, while in normal cells only 20% cell killing effect was observed. EPA had no cytotoxic effects.</p> <p>Changes in abdomen size for control versus Cisplatin treated mice were significantly different, P = 0.023, as were control versus EPD treated mice, P = 0.025, whereas, EPD versus Cisplatin treated mice were not significantly different, P = 0.13.</p> <p>Conclusions</p> <p>For the first time both crude plant extract from <it>Calomeria amaranthoides </it>and EPD have been shown to have potent anti-cancer effects against ovarian cancer.</p

    Multiple bactericidal mechanisms of the zinc ionophore PBT2

    Get PDF
    Published 18 March 2020Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis In this work, we show that PBT2 functions as a Zn2+/H+ ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely.IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer's and Huntington's diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.Nichaela Harbison-Price, Scott A. Ferguson, Adam Heikal, George Taiaroa, Kiel Hards ... Christopher A. McDevitt ... et al

    Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines

    Get PDF
    Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes. A prerequisite for application is the long-term performance and stability of the gene annex trait in the field. For this study, we produced and selected a series of transgenic apple lines of two cultivars, i.e. ‘Elstar’ and ‘Gala’ in which the barley hordothionin gene (hth) was introduced. After multiplication, the GM hth-lines, non-GM susceptible and resistant controls and GM non-hth controls were planted in a random block design in a field trial in 40 replicates. Scab resistance was monitored after artificial inoculation (first year) and after natural infection (subsequent years). After the trial period, the level of expression of the hth gene was checked by quantitative RT-PCR. Four of the six GM hth apple lines proved to be significantly less susceptible to apple scab and this trait was found to be stable for the entire 4-year period. Hth expression at the mRNA level was also stable

    Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight

    Get PDF
    Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions
    corecore