175 research outputs found

    A Cell Culture–Derived Influenza Vaccine Provides Consistent Protection Against Infection and Reduces the Duration and Severity of Disease in Infected Individuals

    Get PDF
    A Vero cell culture–derived seasonal influenza vaccine provides consistently high levels of protection against cell culture–confirmed infection over a complete influenza season. Influenza symptoms are also less severe and of shorter duration in individuals who become infected despite vaccination

    The Chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 Is Essential for H3K27me3 Binding and Function during Arabidopsis Development

    Get PDF
    Polycomb group (PcG) proteins are essential to maintain gene expression patterns during development. Transcriptional repression by PcG proteins involves trimethylation of H3K27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) in animals and plants. PRC1 binds to H3K27me3 and is required for transcriptional repression in animals, but in plants PRC1-like activities have remained elusive. One candidate protein that could be involved in PRC1-like functions in plants is LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), because LHP1 associates with genes marked by H3K27me3 in vivo and has a chromodomain that binds H3K27me3 in vitro. Here, we show that disruption of the chromodomain of Arabidopsis thaliana LHP1 abolishes H3K27me3 recognition, releases gene silencing and causes similar phenotypic alterations as transcriptional lhp1 null mutants. Therefore, binding to H3K27me3 is essential for LHP1 protein function

    Value of tissue harmonic imaging (THI) and contrast harmonic imaging (CHI) in detection and characterisation of breast tumours

    Get PDF
    The purpose of this study was to investigate the extent to which tissue harmonic imaging (THI), speckle reduction imaging (SRI), spatial compounding (SC) and contrast can improve detection and differentiation of breast tumours. We examined 38 patients (14 benign, 24 malignant tumours) with different combinations of THI, SRI and SC. The effect on delineation, margin, tissue differentiation and posttumoral phenomena was evaluated with a three-point score. Additionally, 1oo not palpable tumours (diameters: 4–15 mm) were examined by contrast harmonic imaging (CHI) with power Doppler. After bolus injection (0.5 ml Optison), vascularisation and enhancement were observed for 20 min. The best combination for detection of margin, infiltration, echo pattern and posterior lesion boundary was the combination of SRI level 2 with SC low. THI was helpful for lesions OF more than 1 cm depth. In native Power Doppler, vessels were found in 54 of 100 lesions. Within 5 min after contrast medium (CM) injection, marginal and penetrating vessels increased in benign and malignant tumours and central vessels mostly in carcinomas (p<0.05). A diffuse CM accumulation was observed up to 20 min after injection in malignant tumours only (p<0.05). THI, SRI and SC improved delineation and tissue differentiation. Second-generation contrast agent allowed detection of tumour vascularisation with prolonged enhancement

    Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells

    Get PDF
    The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Δpep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Δpep1 compared to wild type infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Δpep1 mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that is not restricted to the U. maydis / maize interaction

    Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    Get PDF
    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage

    Control of Flowering and Cell Fate by LIF2, an RNA Binding Partner of the Polycomb Complex Component LHP1

    Get PDF
    Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation
    corecore