139 research outputs found

    Climate change presents increased potential for very large fires in the contiguous United States

    Get PDF
    Abstract. Very large fires (VLFs) have important implications for communities, ecosystems, air quality and fire suppression expenditures. VLFs over the contiguous US have been strongly linked with meteorological and climatological variability. Building on prior modelling of VLFs (.5000 ha), an ensemble of 17 global climate models were statistically downscaled over the US for climate experiments covering the historic and mid-21st-century periods to estimate potential changes in VLF occurrence arising from anthropogenic climate change. Increased VLF potential was projected across most historically fire-prone regions, with the largest absolute increase in the intermountain West and Northern California. Complementary to modelled increases in VLF potential were changes in the seasonality of atmospheric conditions conducive to VLFs, including an earlier onset across the southern US and more symmetric seasonal extension in the northern regions. These projections provide insights into regional and seasonal distribution of VLF potential under a changing climate, and serve as a basis for future strategic and tactical fire management options

    Contribution of anthropogenic warming to California drought during 2012–2014

    Get PDF
    A suite of climate data sets and multiple representations of atmospheric moisture demand are used to calculate many estimates of the self-calibrated Palmer Drought Severity Index, a proxy for near-surface soil moisture, across California from 1901 to 2014 at high spatial resolution. Based on the ensemble of calculations, California drought conditions were record breaking in 2014, but probably not record breaking in 2012–2014, contrary to prior findings. Regionally, the 2012–2014 drought was record breaking in the agriculturally important southern Central Valley and highly populated coastal areas. Contributions of individual climate variables to recent drought are also examined, including the temperature component associated with anthropogenic warming. Precipitation is the primary driver of drought variability but anthropogenic warming is estimated to have accounted for 8–27% of the observed drought anomaly in 2012–2014 and 5–18% in 2014. Although natural variability dominates, anthropogenic warming has substantially increased the overall likelihood of extreme California droughts

    Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling

    Get PDF
    The effect of climate change on wildfires constitutes a serious concern in fire-prone regions with complex fire behavior such as the Mediterranean. The coarse resolution of future climate projections produced by General Circulation Models (GCMs) prevents their direct use in local climate change studies. Statistical downscaling techniques bridge this gap using empirical models that link the synoptic-scale variables from GCMs to the local variables of interest (using e.g. data from meteorological stations). In this paper, we investigate the application of statistical downscaling methods in the context of wildfire research, focusing in the Canadian Fire Weather Index (FWI), one of the most popular fire danger indices. We target on the Iberian Peninsula and Greece and use historical observations of the FWI meteorological drivers (temperature, humidity, wind and precipitation) in several local stations. In particular, we analyze the performance of the analog method, which is a convenient first choice for this problem since it guarantees physical and spatial consistency of the downscaled variables, regardless of their different statistical properties. First we validate the method in perfect model conditions using ERA-Interim reanalysis data. Overall, not all variables are downscaled with the same accuracy, with the poorest results (with spatially averaged daily correlations below 0.5) obtained for wind, followed by precipitation. Consequently, those FWI components mostly relying on those parameters exhibit the poorest results. However, those deficiencies are compensated in the resulting FWI values due to the overall high performance of temperature and relative humidity. Then, we check the suitability of the method to downscale control projections (20C3M scenario) from a single GCM (the ECHAM5 model) and compute the downscaled future fire danger projections for the transient A1B scenario. In order to detect problems due to non-stationarities related to climate change, we compare the results with those obtained with a Regional Climate Model (RCM) driven by the same GCM. Although both statistical and dynamical projections exhibit a similar pattern of risk increment in the first half of the 21st century, they diverge during the second half of the century. As a conclusion, we advocate caution in the use of projections for this last period, regardless of the regionalization technique applied.We are grateful to the Spanish Meteorological Agency (AEMET) and to the Hellenic National Meteorological Service (HNMS) for providing the observational data used in this study. We would also like to thank Erik van Meijgaard from the Royal Netherlands Meteorological Institute for making available ENSEMBLES RACMO2 climate model output verifying at 12:00 UTC and to the Max Planck Institute for providing the appropriate data for the ECHAM5 model used in this work. This work was partly funded by European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements 243888 (FUME Project) and from Spanish Ministry MICINN under grant EXTREMBLES (CGL2010-21869). We thank tw

    Biorefining of wheat straw:accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment–severity equation

    Get PDF
    BACKGROUND: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. RESULTS: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. CONCLUSION: Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass

    Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models

    Get PDF
    The observed trend towards warmer and drier conditions in southern Europe is projected to continue in the next decades, possibly leading to increased risk of large fires. However, an assessment of climate change impacts on fires at and above the 1.5 °C Paris target is still missing. Here, we estimate future summer burned area in Mediterranean Europe under 1.5, 2, and 3 °C global warming scenarios, accounting for possible modifications of climate-fire relationships under changed climatic conditions owing to productivity alterations. We found that such modifications could be beneficial, roughly halving the fire-intensifying signals. In any case, the burned area is robustly projected to increase. The higher the warming level is, the larger is the increase of burned area, ranging from ~40% to ~100% across the scenarios. Our results indicate that significant benefits would be obtained if warming were limited to well below 2 °C

    How contemporary bioclimatic and human controls change global fire regimes

    Get PDF
    Anthropogenically driven declines in tropical savannah burnt area have recently received attention due to their effect on trends in global burnt area. Large-scale trends in ecosystems where vegetation has adapted to infrequent fire, especially in cooler and wetter forested areas, are less well understood. Here, small changes in fire regimes can have a substantial impact on local biogeochemistry. To investigate trends in fire across a wide range of ecosystems, we used Bayesian inference to quantify four primary controls on burnt area: fuel continuity, fuel moisture, ignitions and anthropogenic suppression. We found that fuel continuity and moisture are the dominant limiting factors of burnt area globally. Suppression is most important in cropland areas, whereas savannahs and boreal forests are most sensitive to ignitions. We quantify fire regime shifts in areas with more than one, and often counteracting, trends in these controls. Forests are of particular concern, where we show average shifts in controls of 2.3–2.6% of their potential maximum per year, mainly driven by trends in fuel continuity and moisture. This study gives added importance to understanding long-term future changes in the controls on fire and the effect of fire trends on ecosystem function

    Summer warming explains widespread but not uniform greening in the Arctic tundra biome

    Get PDF
    Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades

    20th Century Atmospheric Deposition and Acidification Trends in Lakes of the Sierra Nevada, California, USA

    Full text link
    We investigated multiple lines of evidence to determine if observed and paleo-reconstructed changes in acid neutralizing capacity (ANC) in Sierra Nevada lakes were the result of changes in 20th century atmospheric deposition. Spheroidal carbonaceous particles (SCPs) (indicator of anthropogenic atmospheric deposition) and biogenic silica and δ(13)C (productivity proxies) in lake sediments, nitrogen and sulfur emission inventories, climate variables, and long-term hydrochemistry records were compared to reconstructed ANC trends in Moat Lake. The initial decline in ANC at Moat Lake occurred between 1920 and 1930, when hydrogen ion deposition was approximately 74 eq ha(-1) yr(-1), and ANC recovered between 1970 and 2005. Reconstructed ANC in Moat Lake was negatively correlated with SCPs and sulfur dioxide emissions (p = 0.031 and p = 0.009). Reconstructed ANC patterns were not correlated with climate, productivity, or nitrogen oxide emissions. Late 20th century recovery of ANC at Moat Lake is supported by increasing ANC and decreasing sulfate in Emerald Lake between 1983 and 2011 (p < 0.0001). We conclude that ANC depletion at Moat and Emerald lakes was principally caused by acid deposition, and recovery in ANC after 1970 can be attributed to the United States Clean Air Act
    • …
    corecore