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Abstract The effect of climate change on wildfires constitutes a serious concern
in fire-prone regions with complex fire behavior such as the Mediterranean. The
coarse resolution of future climate projections produced by General Circulation
Models (GCMs) prevents their direct use in local climate change studies. Statis-
tical downscaling techniques bridge this gap using empirical models that link the
synoptic-scale variables from GCMs to the local variables of interest (using e.g.
data from meteorological stations). In this paper, we investigate the application of
statistical downscaling methods in the context of wildfire research, focusing in the
Canadian Fire Weather Index (FWI), one of the most popular fire danger indices.
We target on the Iberian Peninsula and Greece and use historical observations of
the FWI meteorological drivers (temperature, humidity, wind and precipitation)
in several local stations. In particular, we analyze the performance of the analog
method, which is a convenient first choice for this problem since it guarantees
physical and spatial consistency of the downscaled variables, regardless of their
different statistical properties.

First we validate the method in perfect model conditions using ERA-Interim
reanalysis data. Overall, not all variables are downscaled with the same accuracy,
with the poorest results (with spatially averaged daily correlations below 0.5)
obtained for wind, followed by precipitation. Consequently, those FWI components
mostly relying on those parameters exhibit the poorest results. However, those
deficiencies are compensated in the resulting FWI values due to the overall high
performance of temperature and relative humidity.
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Then, we check the suitability of the method to downscale control projections
(20C3M scenario) from a single GCM (the ECHAM5 model) and compute the
downscaled future fire danger projections for the transient A1B scenario. In order
to detect problems due to non-stationarities related to climate change, we compare
the results with those obtained with a Regional Climate Model (RCM) driven by
the same GCM. Although both statistical and dynamical projections exhibit a
similar pattern of risk increment in the first half of the 21st century, they diverge
during the second half of the century. As a conclusion, we advocate caution in the
use of projections for this last period, regardless of the regionalization technique
applied.

Keywords fire danger · FWI · climate change · statistical downscaling · analog
method

1 Introduction

Wildfires are highly dependent on a few meteorological drivers, which are able
to reasonably explain fire activity at different scales, from local/regional (Pausas,
2004; Turco et al, 2012) to continental (Krawchuk et al, 2009) and to global (Pe-
chony and Shindell, 2010). The potential effect of climate change in fire-prone
regions is a serious concern, since the projected changes in climate extremes favor
fire in many regions of the world (Groisman et al, 2007). Particularly, ecosystems
in the Mediterranean are poor in biomass and rarely dry, so both fuel amount
and fuel moisture limit the occurrence of large infrequent fires (Meyn et al, 2007).
This has been confirmed for instance in Greece, where the synergistic effect be-
tween fuel and weather explained the unusually large wildfires in Peloponnese in
2007 (Koutsias et al, 2012).

The primary source of information for projecting fire danger conditions are
the Global Climate Models (GCMs), which jointly simulate the global dynamics
of the components of the climate system (including the atmosphere) for differ-
ent future forcing/emission scenarios (Räisänen, 2007). However, several factors
prevent the direct application of GCM outputs to local climate studies; in par-
ticular, their coarse horizontal resolution (hundreds of kilometers) is unable to
represent local climate features. In order to bridge the gap between the large-scale
variables provided by the GCMs and the local surface variables of interest (e.g.
temperature, humidity, wind and precipitation), different downscaling techniques
have been developed in the last decades. On the one hand, dynamical downscaling
methods are based on Regional Climate Models (RCMs), which simulate regional
features of the climate at a higher resolution over a limited area, driven at the
boundaries by the GCM outputs (see e.g., Giorgi and Mearns, 1999). RCMs are
physically consistent and provide a large number of variables describing the state
of the atmosphere. However, the resulting regional biases need to be carefully con-
sidered, and to date there is no completely satisfactory bias-correction method for
this task (Christensen et al, 2008; Maraun, 2012). On the other hand, statistical
downscaling techniques are based on empirical statistical models linking the large-
scale variables, used as predictors, to the measured variables at the local scale,
which become the dependent variable of the model (see e.g., Benestad et al, 2008).
Statistical downscaling is computationally cheap and it is directly applicable to
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the local sites of interest, without need for further calibration or bias correction
of the resulting outputs. However, this approach is limited to the variables and
sites with available historical records. Thus, dynamical and statistical downscaling
should be regarded as complementary tools whose effectiveness and applicability
depend on the particular problem at hand.

In the framework of wildfire research, historical records of the driving me-
teorological variables are usually available at particular locations, representative
of the fire regimes within the region of interest, often exhibiting complex topog-
raphy and fire behaviors (e.g., Meyn et al, 2010) or intricated coastlines in the
case of islands and coastal areas. Under these circumstances, the particular local
climatic conditions may be poorly represented by RCM simulations. With this
regard, statistical downscaling methods offer an a priori convenient alternative in
order to locally project fire danger conditions. This approach is potentially useful
in the Mediterranean, a fire-prone region of the world where most models predict
warmer and drier conditions in the coming decades (Giorgi and Lionello, 2008). In
this study we have chosen the Canadian Fire Weather Index (FWI, van Wagner,
1987) as a suitable and widely applied fire danger indicator, also in the context
of future fire danger projections (Stocks et al, 1998; Brown et al, 2004; Flannigan
et al, 2005; Moriondo et al, 2006). The suitability of this index as a fire dan-
ger indicator for different Mediterranean ecosystems has been already pointed-out
by Viegas et al (1999) and Dimitrakopoulos et al (2011) among others. FWI uses
as input the same variables as most other alternative fire danger indices —namely
instantaneous values of temperature, relative humidity and wind speed at noon,
or 12 UTC, and accumulated values of precipitation in the previous 24 hours (see
Herrera et al, In press, for a detailed description)—, which are used to model the
different factors involved in fire occurrence, spread and difficulty of suppression.
It was therefore deemed as an appropriate index to illustrate the application of
statistical downscaling in a variety of other wildfire research applications.

The main goal of this paper is analyzing the suitability of one of the most pop-
ular statistical downscaling methods (the analog method) for downscaling FWI
values under future climate change scenarios on two Mediterranean fire-prone re-
gions: the Iberian peninsula and Greece. The suitability of this methodology for
wildfire applications has been already shown by Abatzoglou and Brown (2012), by
comparing the skill to reproduce observations with that of advanced bias correc-
tion techniques, although to date, its application for future fire danger projections
has not been specifically addressed. Besides its simplicity, a clear advantage of the
analog method is that it provides physical and spatially coherent series for all the
meteorological FWI drivers, regardless of their different statistical properties; on
the other hand, its main shortcoming is that it can result unsuitable to address
no-analog situations that may arise in a future climate, such as the medium to
extreme warming conditions in the final decades of the 21st century. We address a
number of methodological issues relevant for the practical application of the ana-
log method, such as the performance of different configurations of the method in
“perfect model” conditions, using reanalysis data, or the problems related to non-
stationarities. In addition, we illustrate its application in future climate conditions
by considering transient projections from a single GCM (the IPCC-AR4/CMIP3
ECHAM5 model) and compare the results with those obtained with a Regional
Climate Model (RCM) driven by the same GCM, in order to track the possible
lack of robustness of the method in non-stationary conditions. In Sec. 2 we describe



4 Bedia et al.

the data used in this work. Sec. 3 presents the statistical downscaling method (the
analog method) and Section 4 describes the results obtained in present an future
climate conditions, respectively, as well as the comparison with dynamical model
results. Finally, Sec. 6 presents the conclusions of this work.

2 Data and Geographical Domains

In this paper we analyze two fire-prone Mediterranean areas (Iberia and Greece,
Fig. 1), and consider data from observations, reanalysis and GCM global projec-
tions in order to compute and project the FWI in those regions. The following
sections describe the particular datasets used.

IBERIA
GREECE 1

GREECE 2

Fig. 1 The two domains used in this study, Iberia and Greece. The positions of the observation
locations are indicated by the white circles. The two domains in Greece are used for sensitivity
purposes in Sec. 4.

2.1 Weather observations

Local weather observations for Spain were obtained from 45 meteorological sta-
tions of the Spanish Meteorological Agency (AEMET), recording the required data
for FWI calculation. The AEMET dataset provides instantaneous values of tem-
perature, relative humidity and wind speed at 13 UTC, and accumulated values of
precipitation in the previous 24 hours, recorded at 07 UTC. For the computation
of FWI (see Sec. 2.2), the precipitation accumulated before noon is considered.
Thus, we adjusted the AEMET precipitation by shifting one day ahead the whole
precipitation series to match the dates of the rest of variables. As a result, it
must be noted that, in the case of precipitation, there is a 5-hour lag between
GCM/RCM and AEMET observations, whereas this lag is only 1 hour for the
rest of variables. In summer local time, these measurements correspond to 15:00
(temperature, relative humidity and wind) and 09:00 (precipitation).
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The weather observations for Greece correspond to eight meteorological sta-
tions from the Hellenic National Meteorological Service (HNMS). The HNMS data
have similar characteristics to the AEMET dataset, with the particularity that in
this case instantaneous observations correspond to 09 UTC instead of 12 UTC, in
order to better approximate UTC time with noon local standard time, provided
that in Greece local time is one hour ahead than Spain. For Greece, high-quality
observations could be only retrieved for the southern part of the country (Pelo-
ponnese and Attica regions).

Therefore, all observational data used in this study, both in Greece and in
Iberia (Spain), correspond to the main station networks of their respective na-
tional meteorological services. All data have been recorded using standard auto-
matic stations (the only ones providing records at short time-steps, allowing the
extraction of noon values), and therefore data quality (outlier filtering, etc.) is
guaranteed, as well as a missing data percentage always below 20%. The resulting
observed climatologies of the variables used to calculate FWI are displayed in Fig-
ure 2. It becomes apparent the high climate variability present in Iberia compared
to Greece. The stations in northern Spain (northwestern Atlantic and north coast
of the Cantabrian Sea) correspond to the Atlantic range of Spain, characterised
by milder temperatures in summer and higher precipitation and relative humidity,
leading to lower FWI magnitudes (Fig. 3). However, the rest of stations in central
and Mediterranean coastal areas of Spain exhibit comparable climatologies than
those found in Greece. Note that, in both study regions, the magnitudes of FWI
during the fire danger season are significantly higher than in the annual case, but
preserving a similar variability (Fig. 3).

2.2 The Canadian Fire Weather Index (FWI) and derived components

The FWI system is composed of six standard components (van Wagner, 1987).
Three of them are known as “fuel moisture codes” and model daily changes in the
moisture content of forest fuels with different drying rates depending on the nature
of these materials: the fine fuel moisture code (FFMC), the duff moisture code
(DMC), and the drought code (DC). One of the major strengths of the FWI system
lies in these three moisture codes, which track moisture in three layers of the forest
floor critical to fire ignition, spread and suppression (Wotton, 2009). The next two
components are related to fuel consumption and fire spread: the build-up index
(BUI) and the initial spread index (ISI). Finally, FWI is obtained as a combination
of the previous parameters, representing the intensity of a spreading fire as energy
output rate per unit length of fire front, which is used as a general, dimensionless,
daily-based indicator of fire danger. Daily FWI values can be converted to a daily
severity rating by applying a simple power transformation (DSR; van Wagner,
1970). This transformation allows the averaging of FWI over longer periods and
takes into account the non-linear increase of fire severity with higher index values.

We computed FWI from the data shown in Sec. 2.1 (see also Fig. 2) following
the original equations presented in van Wagner and Pickett (1985). For the time
span experiment, we alternatively kept the whole annual time series and only the
data corresponding to June-September (both included, in the following referred to
as JJAS), thus focusing only in the season of critical fire danger over the target
area, a common practice in fire danger analysis studies (e.g. Camia et al, 2008).
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Fig. 2 Observed annual climatology (1979-2003) in Spain (left) and Greece (right) at the
weather stations used for downscaling Fire Weather Index (FWI). The variables represented
in rows correspond to the input variables used for FWI calculation. Spatial mean values (for
the whole year and for the fire season —JJAS—, the latter in parenthesis) are indicated in the
figures within each panel.

Fig. 3 shows the mean and standard deviation of the resulting FWI values for each
of the periods. Moreover, we also computed two derived indices which are useful
for practical applications:

– The seasonal severity rating (SSR), by averaging seasonally the DSR. This
index is applied in many impact studies and fire prevention programs.

– The 90th percentile of FWI (FWI90), which is frequently used as an indicator
of extreme fire danger situations (e.g., Andrews et al, 2003; Dowdy et al, 2010).
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Fig. 3 Observed FWI climatologies (1979-2003) in Spain (left) and Greece (right) at the
weather stations used for downscaling in this study. Values indicated in the panels correspond
to spatial mean (upper panels) and standard deviation (lower panels), for the whole year and
for the fire season —JJAS— (the latter in parenthesis).

2.3 Reanalysis and GCM projections

The different predictor variables tested in this study for the statistical downscaling
method are shown in Table 1. On the one hand, predictors were taken from ERA-
Interim reanalysis (Dee et al, 2011), covering from 1979 until present; this product
has proven the most suitable reanalysis for FWI estimation (Bedia et al, 2012).
On the other hand, the same predictor variables were also taken from a single
GCM (the IPCC-AR4/CMIP3 ECHAM5 model, run 3) for the control 20C3M
scenario (1979-2000) and for the transient A1B scenario (whole 21st century).
Due to their different native horizontal resolutions, both reanalysis and GCM data
were re-gridded —using bilinear interpolation— to a regular 2◦ grid considering the
domains shown in Fig. 1, following the standard practice in statistical downscaling
applications. We considered 12 UTC in addition to 00 UTC and daily mean values,
since FWI is calculated at noon. Regarding surface relative humidity, this was
calculated from the surface temperature and the dew point, following the classical
Clausius–Clapeyron equation (Lawrence, 2005).

Note that in this paper we do not intend to provide final products regarding
future FWI projections over the regions of interest, but only to assess the suitabil-
ity of the analog methodology for this task. Therefore, for illustrative purposes
we used a single GCM, although in a different context a multi-model ensemble
approach should be considered, accounting for the variability of different GCM
projections.

Finally, it is worth to remark that all the predictors considered (Table 1) are
well reproduced in southwestern Europe by most of the GCMs used in the EU-
funded project ENSEMBLES (van der Linden and Mitchell, 2009) after bias re-
moval (Brands et al, 2011) and, in particular, by the ECHAM5 model used in this
study.
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Table 1 Predictor variables used in this work. 3D variables contain information at the 850
and 500 hPa levels. 2D variables refer to mean sea level.

Code Name level time unit
T Temperature 3D 12/00 UTC K
R Relative humidity 3D 12/00 UTC %
U U-wind 3D 12/00 UTC ms−1

V V-wind 3D 12/00 UTC ms−1

SLP Sea-level pressure 2D daily mean Pa
2T Surface (2m) Temperature 2D daily mean K
2R Surface Relative humidity 2D daily mean %
10U 10m U-wind 2D daily mean ms−1

10V 10m V-wind 2D daily mean ms−1

3 The Analog Downscaling Method

The analog method was introduced in the field of atmospheric science by Lorenz
(1969). It is a simple and powerful downscaling technique which assumes that
similar (or analog) atmospheric patterns X over a given region lead to similar
local meteorological outcomes Y s for a particular location or set of locations s

(Y = {temperature, humidity, wind, precipitation} in this study; note that boldface
is used for vectors). This assumption provides a simple algorithm to downscale the
local occurrence of the variables of interest Y s i from a given atmospheric pattern
Xi (e.g. from the i-th daily projection of a GCM). The local occurrence is esti-
mated from the historical daily occurrences Y sa(i) in a set of “analog dates” a(i)
within a historical calibration period (1979-2003 in this study). Under the perfect
prognosis approach (hereafter referred to as “perfect model” conditions), the at-
mospheric patterns in the calibration period are built using a reanalysis dataset
and, hence, the analog dates correspond to those historical days with atmospheric
reanalysis patterns closer to Xi. In particular, we applied the deterministic nearest
neighbor method (Zorita et al, 1995; Cubasch et al, 1996; Gutiérrez et al, 2013),
by which only the closest analog (in the sense of the Euclidean distance) is con-
sidered. Then, Y s i = Y s a(i) and, hence, both the spatial and inter-variable (or
physical) dependence structure of the observational data is preserved in the down-
scaled series. Thus, apart from its simplicity, the main advantage of the analog
method is that it can be jointly applied to all the local variables in all the local
sites needed for the FWI calculation.

In general, it has been shown that the analog method performs as well as
other more sophisticated downscaling techniques (Zorita and von Storch, 1999),
indicating that this poor-man method is an efficient alternative for many downscal-
ing problems. In particular, a complex variant of the analog method, the so-called
multivariate adapted constructed analogs, has been successfully applied to wildfire
research (Abatzoglou and Brown, 2012), outperforming the skill of advanced bias
correction techniques to reproduce local observations. However, this methodology
suffers from several problems which may limit its application in non-stationary fu-
ture climate change conditions (Benestad et al, 2008), particularly in the medium
to extreme warming conditions predicted for the second half of the 21st century
(Gutiérrez et al, 2013). This issue is of special relevance in fire research, given that
the fire danger season corresponds to summer, when new temperature maxima are
predicted to occur in the future, being extreme FWI events linked to exceptionally
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warm periods (see e.g., Bedia et al, 2012, and Fig. 2 therein). In the following we
focus in this challenging problem, and analyze the suitability of the simple analog
method for downscaling FWI values under future climate change scenarios.

The difficult step in the configuration of the analog method is the appropriate
definition of the atmospheric pattern X —defined by a geographical domain and
a set of large-scale variables— suitable to downscale the local variables of interest.
In this paper, we build on the results obtained in the Spanish national program on
regional scenarios Escenarios-PNACC 2012 (Gutiérrez et al, 2012). In this project,
different geographical domains and predictor sets were compared over the Iberian
peninsula in order to asses the performance of different downscaling methods (see
Gutiérrez et al, 2013, for the results for temperature). The optimum results found
for temperature and precipitation in both Atlantic and Mediterranean climatic
regions were achieved with the smallest geographical window considered: a window
centered on the Iberian Peninsula with bounding box coordinates 45◦N, 35◦N,
10◦W, and 5◦E (Fig. 1). In the case of Greece, we considered a geographical domain
of the same area, but centered over the area of study (labeled as Greece 1 in Fig. 1:
44◦N, 34◦N, 31◦E, 16◦E), and tested the sensitivity of the downscaling results
to the window size and position, following a similar procedure as in Gutiérrez
et al (2013). In this case, due to the smaller area covered by the observations
(Peloponnese and Attica regions) we considered also a smaller domain covering
the network of stations (40◦N, 35◦N, 26.0◦E, 18.5◦E), labelled as Greece 2 in
Fig. 1. Similarly to the case of Iberia, the best results were obtained with the
domain Greece 1. Thus, in the following we only report the results for the Greece
1 domain.

The different predictors tested in this study (Table 1) include the typical vari-
ables used in the statistical downscaling studies carried out for different European
regions (see e.g. Maraun et al, 2010; Gutiérrez et al, 2013, and references therein).
The predictor combinations were chosen to meet the needs of fire danger climate
change studies, and in particular of FWI, and include “signal-bearing” predictors
(e.g. temperature) in order to capture a potential climate change signal (Table
2). Pattern P1 is defined based on the variables involved in the calculation of
FWI, considering their values in the middle troposphere, since surface variables
are not properly represented by GCMs due to their coarse orography; as the only
exception we also consider 2m temperature, since near surface temperature has
been found to be the optimum predictor for temperatures in several studies (see
Gutiérrez et al, 2013, and references therein). The surface version of P1 (pattern
P2) is considered only for benchmarking purposes in “perfect model” conditions.
Other alternative configurations were also tested (patterns P3 and P4), attaining
no significant improvements (not shown).

Moreover, for every predictor combination, two static definitions were set, con-
sidering the values at 12 UTC and 00 UTC, respectively. In addition, a dynamic
pattern was also considered, joining both 00 and 12 UTC values in the same pattern
for downscaling. Similar results were obtained in all cases. Therefore, we selected
the static pattern at 00 UTC, since this output is available in the ENSEMBLES
GCMs used in Sec. 5, whereas the 12 UTC was not available.
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Table 2 Predictor combinations selected for statistical downscaling. For each combination,
both the static (12 and 00 UTC) and dynamic (00+24 UTC) temporal setup have been tested.
Variable names are indicated in Table 1.

Pattern Variables
P1 2T T850 R850 U850 V850
P2 2T 2R 10U 10V
P3 2T R850
P4 SLP T850 U500 V500 Q850
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Fig. 4 Spearman correlation and bias between the observations and the downscaled FWI
projections using two predictor combinations. Figures on each panel indicate the corresponding
spatial mean values.

4 Results in Perfect Model Conditions

We applied the above described downscaling method to the four input meteorologi-
cal variables, calculating the downscaled FWI values from the resulting downscaled
inputs. First, we analyzed the performance of the method in perfect model condi-
tions, so we downscaled the reanalysis data used for calibration within the same
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calibration period. In this case, some form of cross validation is necessary, since
the same dataset is used for calibrating and testing the model. In particular we
considered a k-fold cross-validation approach for the 25-year calibration period,
using k = 5 different combinations of calibration and test periods, each containing
20 years for calibration and 5 years for testing. We considered a stratified regular
sampling, where the first test sample was formed by the years: 1979, 1984, 1989,
1994, 1999, the second by the years 1980, 1985, etc. (see e.g. Gutiérrez et al, 2013,
for more details). The resulting five test periods cover the whole validation period
(1979-2003), so they were concatenated into a single final test series which was
used to compute the different validation scores.

In order to assess the predictive performance of the downscaling, the Spearman
rank correlation coefficient was used as association measure between the observed
and the predicted series. As opposite to the Pearson correlation, it is robust to out-
lier values and can deal with possible non-linear relationships between downscaled
and observed time series. Hence, it is the preferable association measure for the
different components of the FWI system and the rest of variables analyzed. The
results obtained with the two predictor sets, P1 and P2, in terms of the Spearman
correlation and bias, are shown in Fig. 4 for Iberia and Greece. This figure shows
that the results for the benchmarking pattern P2 are slightly better than P1 in
Iberia, whereas they perform similarly in Greece. Therefore, P1 seems to be a good
pattern both in terms of skill and GCM reproducibility for downscaling climate
change projections.

In order to further analyze the performance of the analog downscaling method,
correlations for the daily and JJAS-averaged series were obtained for the P1 pat-
tern (see Table 3). Results are shown for the different components of the FWI (see
Section 2.2 for details) and for its input meteorological variables. In general, the
method performs adequately considering the annual daily time series, which is the
native time resolution of FWI, for the two study regions. However, not all input
FWI variables are downscaled with the same skill, and the relatively high perfor-
mance of the method for temperature and relative humidity contrasts with the
poor correlations attained in the case of wind, and to a lesser extent, precipitation
(the latter attaining better results in Greece than in Iberia). This fact has an effect
on the resulting FWI components: For instance, components tracking fire spread,
more directly dependent on wind (like ISI, see e.g. Wotton, 2009, for details), are
less accurately predicted than components that predominantly rely in relative hu-
midity and/or temperature (e.g. DMC and DC), although these are still dependent
to some extent on precipitation. As depicted in Table 3, the performance of the
analog downscaling decreases notably when considering the cross-correlations of
averaged JJAS data. This is explained by the lower variability of the fire danger
indices during the summer, that maintain high values due to the scarce precipi-
tation and the high temperatures. In contrast, when computing the correlations
with the annual daily series, the method is able to properly capture the seasonal
cycle yielding better results. In consequence, performing the downscaling on the
whole annual series is the recommended approach.
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IBERIA GREECE
min mean max min mean max

WSS
daily 0.16 0.27 0.38 0.20 0.29 0.34
JJAS -0.35 0.12 0.48 -0.22 0.14 0.63

HURS
daily 0.22 0.51 0.72 0.23 0.53 0.68
JJAS -0.24 0.30 0.67 0.09 0.42 0.61

PR
daily 0.23 0.35 0.53 0.37 0.49 0.55
JJAS -0.21 0.21 0.50 0.23 0.42 0.60

TAS
daily 0.79 0.89 0.92 0.92 0.93 0.94
JJAS 0.27 0.79 0.93 0.65 0.84 0.93

FFMC
daily 0.37 0.64 0.82 0.62 0.78 0.83
JJAS -0.17 0.37 0.68 0.45 0.58 0.69

DMC
daily 0.61 0.80 0.90 0.82 0.89 0.93
JJAS -0.16 0.28 0.66 -0.26 0.31 0.62

DC
daily 0.33 0.67 0.89 0.57 0.81 0.91
JJAS -0.43 0.23 0.56 -0.26 0.28 0.47

ISI
daily 0.32 0.54 0.79 0.49 0.65 0.74
JJAS -0.20 0.28 0.71 0.21 0.35 0.47

BUI
daily 0.58 0.80 0.90 0.81 0.89 0.93
JJAS -0.28 0.27 0.62 -0.29 0.33 0.75

FWI
daily 0.41 0.63 0.82 0.71 0.79 0.83
JJAS -0.14 0.31 0.64 0.10 0.44 0.59

Table 3 Results of cross-validation in terms of Spearman’s rho obtained by the daily and
seasonally (JJAS) averaged downscaled series, using the variables of the static atmospheric
pattern P1 at 00 UTC.

5 Climate Projections and Comparison with RCM Results

Using the GCM variables, we computed FWI projections for the 20C3M scenario
(for the control period 1971-2000) and for the transient A1B scenario (for the 21st

century). We first evaluated the performance of the downscaling method in the
control period, considering the predictors from the 20C3M scenario and using the
period overlapping with the ERA-Interim reanalysis (1979-2000) to compare the
results. Note that, as opposite to the downscaled series from the reanalysis, in
this case there is no day-to-day correspondence between the model outputs and
the observations, even though the projections are done in an historical period.
Therefore, we just compared the climatological downscaled and observed values
for the annual and the seasonal JJAS series, displaying also the results in perfect
model conditions for comparison (Table 4). We found moderate biases in both
the mean and standard deviation in the 20C3M scenario, with similar magnitudes
to that corresponding to the reanalysis ones, and even smaller in some cases. In
general, relative GCM biases are below 10% with some exceptions, particularly
in the JJAS precipitation in Greece, with relatives biases both in the mean and
the standard deviation larger than 20%. However, the mean JJAS precipitation in
Greece is small (0.37 mm/day vs. the 0.48 obtained with the downscaling method)
and, hence, the relative errors are not very informative in this case.

Once verified that the GCM outputs are suitable for the statistical downscal-
ing method, we proceeded with the calculation of the FWI increments/deltas for
three different future periods: 2011-2040, 2041-2070 and 2071-2100. The deltas
have been obtained as the period-averaged differences from the A1B and the
20C3M downscaled values. The results for JJAS are shown in Fig. 5 for SSR



Statistical downscaling of Fire Weather Index 13

Table 4 Relative errors of the mean µ and standard deviation σ climatological values of
the downscaled w.r.t. the observed values (pred/obs − 1 in %) according to pattern P1 (see
Table 2) for ERA-Interim reanalysis (REA) and the ECHAM5 20C3M control scenario (CTL).
Results correspond to the primitive FWI variables: temperature (T), relative humidity (H),
precipitation (P) and wind velocity (W), and also to the resulting Fire Weather Index (FWI).

IBERIA GREECE
Annual JJAS Annual JJAS

REA CTL REA CTL REA CTL REA CTL

T
µ 0.1 1.1 -0.5 -0.1 0.2 0.5 -0.2 -0.5
σ -1.9 -0.9 0.8 8.1 -0.8 -1.2 -2.2 14.5

H
µ -0.4 -1.0 0.5 -0.9 0.7 -1.0 0.6 0.0
σ -2.0 -0.1 -1.5 0.6 0.8 2.5 -0.7 10.9

P
µ -8.8 -0.6 0.0 1.1 -0.6 -4.9 -2.7 29.7
σ -8.6 -2.8 -9.3 -10.4 -0.3 -4.7 1.5 21.4

W
µ 0.1 2.1 -1.1 0.6 -1.9 3.7 -1.8 2.3
σ -1.8 -0.3 -2.3 -0.6 -2.1 3.6 -1.4 3.8

FWI
µ 2.6 3.4 0.6 2.7 -4.2 1.9 9.9 12.5
σ -4.1 -1.5 -5.3 -4.2 4.1 11.4 -6.2 5.8

and FWI90 (columns 2 and 4). In both regions and for both indices, the deltas
obtained with the analog method exhibit a similar pattern for the first two peri-
ods considered. The projected anomalies are larger for the FWI90, representing
extreme fire danger conditions, than for SSR, representative of average conditions.
Note that this is in accordance with recent results on the projected changes in cli-
mate extremes (Seneviratne et al, 2012). However, in the last period (2071-2100),
the spatial pattern of these deltas is not consistent anymore, pointing to problems
with the method. In this case, deltas show an unrealistic spatial variability, partic-
ularly for Greece, with big and small increments depending on the location; this
may be the result of the complex interaction of the deltas for the four variables
forming the FWI and is also an indication of the lack of robustness of the analog
method in the period 2071-2100.

In order to check the consistency of the analog method with a dynamical down-
scaling model output, specially for the 2071-2100 period, we compared the per-
formance of the statistical approach with the results of a dynamical downscaling.
To this aim, we considered data from the state-of-the-art regional climate change
projections in Europe provided by the ENSEMBLES project (van der Linden and
Mitchell, 2009). In particular we used the RACMO2 RCM simulations (van Mei-
jgaard et al, 2008), ran in the Royal Netherlands Meteorological Institute. This
RCM was deemed the most appropriate in this study for several reasons: First of
all, the driving GCM is the same as the one used for the statistical downscaling
(ECHAM5, run 3), and thus the uncertainty linked to GCM projections in the
final results can be ruled-out. Secondly, instantaneous noon data from this RCM
are available in this case, needed for the calculation of the appropriate FWI sce-
narios. It must be noted that the publicly available ENSEMBLES database does
not provide this type of data, but daily mean values instead, that should not be
used for FWI calculation (Herrera et al, In press). Furthermore, the good perfor-
mance of this GCM/RCM coupling has been reported in different studies (e.g., in
the Iberian Peninsula by Herrera et al, 2010).
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Fig. 5 Projected future fire regimes (A1B scenario) in terms of anomaly (delta) w.r.t. the
control 20C3M scenario (1971-2000) for the periods 2011-2040, 2041-2070 and 2071-2100. Spa-
tial mean values are indicated at the bottom of each panel. In the case of the RCM projections
the spatial mean of the whole domain is indicated by the capital M and the mean at the point
locations by m. Fire danger indicators are seasonal severity rating (SSR) and 90th percentile
of FWI (FWI90), both considered on the fire danger season (JJAS).

The resulting deltas of the RCM are shown in Fig. 5 (columns 1 and 3), which
can be compared to the deltas obtained by the analog method for the same peri-
ods at the coincident grid cells. These results show that the spatial patterns and
magnitudes of the climate change signal obtained using the analog method is com-
parable to that obtained by the RCM simulations for the first two future periods
considered (2011-40 and 2041-70), and only in the last decades of 21st century
(2071-2100) a departure between both types of projections becomes evident, with
a tendency of the statistical method to underestimate the climate change signal
compared to the RCM. For the case of Iberia, this issue is further illustrated in
Fig. 6, which shows the point-based values of the statistical downscaling method
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Fig. 6 Climate change signals (deltas) for the three future periods (2011-2040, 2042-2070
and 2071-2100) at the point locations in Iberia for a) the seasonal severity rating (SSR) and
b) 90th percentile of FWI (FWI90), according to the statistical downscaling method (X–axis)
and the dynamical downscaling projections of the RCM (Y–axis).

versus the RCM ones in the corresponding nearest grid-boxes. This result is in
agreement with previous findings reporting the lack of robustness of the analog
method in non stationary conditions for some of the variables involved (see e.g.
Gutiérrez et al, 2013). On the other hand, RCMs have been shown to over-estimate
temperature and dryness in the last decades of 21st century (Christensen et al,
2008; Maraun, 2012), thus possibly inflating fire danger projections. Therefore
this departure between dynamical and statistical projections accounts not only
for limitations of the analog method, but also to known problems of dynamical
downscaling methods.

6 Conclusions

The performance of the analog method to project Fire Weather Index from global
model outputs was assessed in the Iberian Peninsula and Greece. The analog
method is adequate in order to preserve the physical coherence between all vari-
ables involved in FWI calculation, but problems due to the inability of the method
to extrapolate variable magnitudes beyond the historical records, may limit its ap-
plicability when projecting future climate scenarios. Overall, the analog method
produced good results when applied in perfect model conditions, although not with
equal success for the four FWI input variables. The method exhibited a high skill
for temperature and relative humidity, and worse results in the case of precipita-
tion and especially wind, limiting the performance of the components of the FWI
more dependent on these variables. However, these deficiencies are compensated
in the resulting FWI values due to the overall high performance of temperature
and relative humidity, which have been shown to be the most influential variables
on FWI (Bedia et al, 2012).
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Our results also reveal that the downscaling method presented is able to prop-
erly reproduce the fire danger regimes of the 25-year historical period considered,
both the mean fire danger conditions, as represented by the SSR, and the ex-
treme fire danger conditions, defined by the FWI90. However, due to the nature
of the analog method, the downscaled series do not preserve the daily temporal
sequencing of the different FWI codes tracking drought and fuel moisture, and
thus caution must be taken in the eventual case of day-to-day analyses.

To date, this is the first study showing that statistical downscaling can be
successfully applied for the generation of local future fire danger scenarios, attain-
ing comparable results to RCM projections. This holds true until the last part
of the transient period (2071-2100 in this study), when problems stemming from
non-stationarities negatively affect to both methodologies: On the one hand, at
this point the analog method starts suffering from a lack of robustness as unprece-
dent warm days become increasingly frequent. This is manifested by a spatially
inhomogeneous pattern of the resulting anomalies, not corresponding with the pat-
tern obtained using the RCM. On the other hand, in this later period RCMs are
known to overestimate summer temperatures and dryness, thus leading to inflated
fire danger projections. Therefore, we advocate caution on the use of projections
for the last decades of the 21st century in climate impact studies, regardless of the
regionalization technique applied.
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