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Exacerbated fires in Mediterranean Europe due to
anthropogenic warming projected with non-
stationary climate-fire models
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The observed trend towards warmer and drier conditions in southern Europe is projected to

continue in the next decades, possibly leading to increased risk of large fires. However, an

assessment of climate change impacts on fires at and above the 1.5 °C Paris target is still

missing. Here, we estimate future summer burned area in Mediterranean Europe under 1.5, 2,

and 3 °C global warming scenarios, accounting for possible modifications of climate-fire

relationships under changed climatic conditions owing to productivity alterations. We found

that such modifications could be beneficial, roughly halving the fire-intensifying signals. In

any case, the burned area is robustly projected to increase. The higher the warming level is,

the larger is the increase of burned area, ranging from ~40% to ~100% across the scenarios.

Our results indicate that significant benefits would be obtained if warming were limited to

well below 2 °C.
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The Paris Agreement of the United Nations Framework
Convention on Climate Change (UNFCCC), signed in
December 2015, aims “to hold the increase in the global

average temperature to below 2 °C above preindustrial levels and
to pursue efforts to limit the temperature increase to 1.5 °C…”.
Following the invitation from the UNFCCC, the Intergovern-
mental Panel on Climate Change (IPCC) is preparing a report on
the impacts of global warming of 1.5 °C above pre-industrial
levels (https://www.ipcc.ch/report/sr15/) to be published in 20181.
To provide updated information for the proposed IPCC special
report, recent research efforts have significantly boosted our
knowledge on the risks at 1.5 and 2 °C of warming, focusing on
climate extremes2 and the relevant impacts on agriculture3, power
generation4, ecosystems5, and hydrology6. However, the transla-
tion of ambitious warming targets into impacts on future wildfires
remains to be studied.

Mediterranean Europe is a relevant region for such an analysis
because fires frequently burn across this area, causing severe
economic and environmental damage, including loss of lives,
infrastructures, and ecosystem services such as carbon seques-
tration and the provisioning of raw materials, with an average of
approximately 4500 km2 burned every year7–9. For instance, the
fire season in 2017 was severe in many regions of Southern
Europe, with large wildfires in southern France, Italy, Portugal,
and Spain associated with unusually intense droughts and heat-
waves. These fires caused extensive economic and ecological
losses and even human casualties10.

Under changing climate conditions, several possible pathways
of wildfire response can be identified depending on the magni-
tude of climate change, as well as on differences in how fires,
vegetation, and humans respond to such changes11. Several stu-
dies support the hypothesis that in Southern Europe, summer
drought conditions and high temperatures are primary drivers of
the inter-annual variability of fires9,12–21. Previous works using a
variety of approaches of increasing complexity, from correlation-
based models22–24 to process-based models25,26, consistently
indicate that fire risk is expected to increase in the future. To date,
process-based models have been unable to reproduce the
observed fire evolution27,28 and show a large spread in future fire
projections between models26, while statistical analyses for the
whole of Mediterranean Europe are still relatively scarce9,18,22.

Previous empirical (data-driven) studies have derived models
based on the sensitivity of fires to interannual climate variability,
usually assuming the climate-fire relationship to be stationary
over time. However, it is expected that a warmer and drier climate
can affect wildfire activity not only by leading to more favourable
conditions for burning but also by modifying the structure of the
fuel (in terms of availability and continuity) to be burned. In
other words, the nature of the fire climate links may change over
time and relatively small variations in future climates could lead
to drastic shifts in fire activity because of productivity alterations.
Only if the direct effect of climate change in regulating fuel
moisture (e.g., drier and warmer conditions increase fuel
flammability leading to larger fires) continues to be dominant
with respect to the indirect effect on fuel load and structure (e.g.,
drier and warmer conditions limit fuel availability), fire risks will
increase7,9,29–32 as the climate becomes warmer and drier33,34.

In recent decades, changes in climate and other environmental
and socioeconomic factors have significantly affected both fire
regimes35,36 and fire-climate links37–42. In particular, Pausas and
Paula42 show that in Mediterranean ecosystems, fuel determines
the fire-climate relationship as wet and productive regions are
more sensitive to flammable conditions than dry regions. The
results obtained in these studies indicate the importance of
considering the non-stationary nature of fire-climate relation-
ships to obtain more realistic fire projections as climate change

may drive fuel structure changes and consequently modify the
climate-fire relationship.

The aim of this paper is to explore the fire response in an
ensemble of state-of-the-art regional climate projections (RCM)
in Mediterranean Europe at 1.5, 2, and 3 °C of mean global
warming. We built an ensemble of regional-scale models linking
climate and summer burned area, and then we projected these
relationships for different climate scenarios with and without
taking into account how the long-term impact of climate on fuel
productivity might affect the climate-fire relationships. Despite
there are several sources of uncertainty, which are larger for
longer time horizons, a consistent pattern emerges from the
analysis of the available data, supporting the robustness of the
results. Overall, we found that the projected increase in drought
conditions leads to larger burned area values and that limiting
global warming to 1.5 °C can strongly reduce the increase of
burned area.

Results
Defining the climate-fire model. A recent study9 has shown that
the area burned by summer fires is directly associated with same-
summer drought conditions in most sub-regions of Mediterra-
nean Europe. The approach discussed here builds upon this result
and explores the relationship between drought indicators and
fires through a statistical model. The influence of climate on BA
in summer months (June, July, August and September; JJAS) is
considered through the use of the standardised precipitation
evapotranspiration index (SPEI43) as a climate indicator/pre-
dictor. For each sub-region of the domain (i), we express the
possible link of year-to-year (t) changes in summer fires with the
SPEI using the following model:

log BA i; tð Þ½ � ¼ β1 ið Þ þ β2 ið Þ � SPEIsc;m i; tð Þ þ β3 ið Þ
�T tð Þ þ ε i; tð Þ ð1Þ

where BA(i,t) is the BA in the ith eco-region and summer t; β1 is
the intercept; β2 represents the sensitivity of BA in each region to
dry conditions as summarised by the SPEI; β3 is the coefficient of
the time term T (in years) that characterises the temporal trends
of BA, thus taking into account the possible influence of slowly
changing factors over the study period; and ε is a stochastic noise
term that captures all other (neglected) processes that influence
BA other than SPEI and T. Drought conditions are measured by
the SPEI indices aggregated in multi-month values, SPEIsc,m,
where m is the month for which the SPEI is computed (which we
allow to vary from previous spring to coincident summer
months) and sc is the time scale (number of months) used to
compute the SPEI (we consider periods of 3, 6, and 12 months;
for instance, sc= 3 corresponds to the precipitation, PRE, and
potential evapotranspiration, PET, anomalies accumulated over
the 3 months m-2, m-1, and m; see the methods section).

The SPEI-BA model shows good performance in reproducing
the observed BA variations in most of the domain, with a spatially
averaged correlation of 0.68 (and 0.54 obtained through a leave-
one-out cross-validation). This result suggests that parsimonious
regression models are able to explain at least some of the main
processes determining the effects of climate variability on the
Mediterranean summer BA, thus supporting their use in
estimating fire response to different climate change projections
(see Supplementary Figs. 1–3 for more details on the models
parameters and skill and Supplementary Table 1 for an exact
definition of the model for each region).

In Eq. 1, the term T represents the linear temporal trends of the
fire variable resulting from both anthropic effects (such as a
gradual increase in fire management effort) and environmental/
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climatic changes. These trends are negative and significant in
several regions (Supplementary Fig. 3; see also refs.8,28 for more
details). That is, in the past few decades, the measured trend of
BA in Mediterranean Europe has generally been steady or
negative, while drought conditions have increased44,45. These
opposite trends suggest that management actions have so far
counterbalanced the climatic trend23,46.

The response of BA to SPEI variations (i.e., the parameter β2,
that is the fingerprint of climate on BA), is negative (Fig. 1).
Because negative SPEI values correspond to hot and dry
conditions, this result indicates that overall, the mechanism by
which drought affects BA is straightforward: warmer and drier
summers lead to larger fires. However, the drought-fire relation-
ship is more complex. Already by visual inspection of Fig. 1, we
observe that the generally higher absolute values of the parameter
β2 (i.e., a higher BA sensitivity to SPEI variation) are in the
northern region. The statistical analysis that follows provides a
confirmation. To find which climate variables better explain the
spatial variation of β2, we tested for several candidates, such as the
long-term mean temperature (T), PRE, PET, and the water
balance PRE-PET, considering the data aggregated both at annual
and at summer scales in the following model:

β2 ið Þ ¼ γ1 þ γ2 � X ið Þ þ ε ið Þ ð2Þ

where X(i) is the temporally averaged value of the chosen climate
variables in the eco-region (i), γ1 is the intercept, γ2 is the
coefficient of the climate term X, and ε is a spatially uncorrelated
stochastic noise term.

Several potential models (with T, PRE, or PRE-PET at the
annual or summer scale) show reasonable skill in reproducing β2.
Table 1 reports the results for which the correlation between
simulated and observed values is statistically significant and the
null hypothesis of negligible spatial autocorrelation of the
residuals is accepted (using Moran’s I test). The best performing
model is based on the long-term annual mean temperature (Ty);
thus, we consider this variable in the following analysis. However,

because the choice between the different models may be critical,
we also tested the sensitivity of the outcomes to model selection
and estimated BA using all the models in Table 1.

The relationship between the long-term average of annual
temperature (Ty) versus the sensitivity of BA to SPEI (β2) for the
different eco-regions suggests that in (northern) colder, wetter
and more productive regions (where Ty shows lower values),
drought plays a more prominent role for BA than in (southern)
drier regions (where Ty shows larger values; Fig. 2). This result is
in line with the results obtained for vegetation-fire-climate
relationships in Mediterranean areas42, which shows that the
sensitivity of fire activity to dry periods is larger in productive
zones.

We interpret this spatial variation as a surrogate for potential
non-stationarity in the BA-SPEI links. That is, the value of β2 in
southern regions may serve as an analogue for the BA-SPEI
relation in the northern regions that will experience an increase in
temperature. In other words, if the value of Ty in northern regions
increases up to the values observed in southern areas, the current
changes in these latter regions can provide a hint on the future
evolution in northern areas. Note that this similar adjustment/
adaptation strategy is widely used to analyse the effects of climate
change on the economy and agriculture (see, e.g.,47–49), but to the
best of our knowledge, this approach has never been applied to
study the impact on fires as done here.

Fire projections. To explore the behaviour of future BA, we
proceed as follows. First, we consider the stationary SPEI-BA
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Fig. 1 Sensitivity of burned area to SPEI variations. This sensitivity is represented by the coefficients β2 of Eq. 1

Table 1 Empirical climate–β2 models (Eq. 2) considering
different (temporally averaged) climate variables (first
column)

Climate
variable

γ1 γ2 Correlation

Ty −1.62 0.057 0.64
Ts −2.02 0.057 0.63
PREs −0.68 −0.00100 0.50
P-PETs −1.05 −0.00050 0.46
P-PETy −0.90 −0.00023 0.37
PREy −0.61 −0.00032 0.31

Note: Regression parameters are reported in the second and third columns, while the correlation
between simulated and observed β2 values is indicated in the last column
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Fig. 2 Relationship between the long-term average of annual temperature
(Ty) versus the sensitivity of burned area to SPEI (β2) for the different eco-
regions. The colours of the points indicate the latitude of the centroid of the
sub-region. Grey bars enclose 95% confidence intervals of the individual β2
values. The black line indicates the best linear fit, while dashed lines
indicate the 95% confidence interval of the linear regression model of Eq. 2
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model (hereinafter SM):

log BA i; tð Þ½ �climate¼ β1 ið Þ þ β2 ið Þ � SPEIsc;m i; tð Þ þ ε i; tð Þ ð3Þ

Then, to take into account the potential changes in the SPEI-
BA links, we redefine β2 in Eq. 3 to follow the Ty-β2 relationship
provided by Eq. 2 and Table 1, in what we call the non-stationary
model (hereinafter, NSM):

log BA i; tð Þ½ �climate¼ β1 ið Þ þ γ1 þ γ2 � X ið Þ� �

�SPEIsc;m i; tð Þ þ ε i; tð Þ ð4Þ

The models in Eqs. 3 and 4 explicitly depend only on climatic
variables. Both models may be useful, even when the assumption
of stationarity in the SM model does not hold true. Indeed,
comparing SM with NSM projections provides a measure of the
contribution of the climate-fire link changes to the projected BA.

At this point, we drive the models in Eqs. 3 and 4 with RCM
projections, selecting the temporal windows where the global
mean temperature increase is 1.5, 2, or 3 °C. The spatially
averaged BA changes for different warming levels and for
different model specifications are displayed in Fig. 3. Four main
conclusions can be drawn from this analysis.

First, a robust increase in BA is projected over Mediterranean
Europe. Second, this increase is much higher for 2 °C (with values
between 62 to 87% depending on the model specifications) and 3
°C of global warming (with values between 96 to 187%) compared
to the 1.5 °C target (with values between 40 to 54%). Third, the
results indicate that NSM (non-stationary) models generally led
to lower impacts, especially for larger temperature variations. For
the +3 °C case, BA shows increases of 175 to 187% (depending on
considering only the RCMs or the model+ RCMs spread) with
SM and of +96% to +97% with the NSM approach. Finally, we
note that the overall uncertainty is dominated by the RCM spread
rather than by the uncertainties related to the climate-fire model.
Indeed, there are only minor differences between the (N)SM-
RCM boxes (RCM model uncertainty, as given by the multimodel
spread) and between the (N)SM-ALL boxes (RCM+model
parameter estimation uncertainty, estimated by the spread of
1000 bootstrap model replications for each RCM).

At the 1.5 °C warming target, all regions exhibit a moderate
increase in BA, with significant changes mostly in the Iberian
Peninsula (Fig. 4, panels a and b). Larger increases in BA are
foreseen for the +2 °C case (Fig. 4, panels c and d) with a larger
number of eco-regions displaying significant changes. For
the +3 °C case (Fig. 4, panels e and f), the BA shows even larger
positive changes that are significant in the majority of eco-
regions. The obtained BA increases are consistent with the SPEI
projected changes, depicting an overall intensification of drought
conditions across regions that increases progressively with the
level of global warming (Supplementary Fig. 5), with drier
conditions resulting from an increase in PET (Supplementary
Fig. 6) and a general reduction in precipitation amount (spatially
more heterogeneous than for PET; Supplementary Fig. 7), which
is in line with previous studies, e.g.,50,51.

The lower BA changes estimated by NSM than by SM are
consistent with the hypothesis of an adjustment of the ecosystem
structure. That is, if we consider only direct climate-fire linkages
through the stationary model, the BA projections are higher
(especially considering the 3 °C scenario) than if we consider also
the potential indirect effects of climate-driven changes in fuel
productivity. Non-stationary models reduce the sensitivity of fire
activity to dry periods by taking into account potential changes in
productivity as a result of warming. However, as already
mentioned, several models can be used to fit Eq. 2, and therefore
this result could be partially model-dependent. The sensitivity of
the results to the details of the NSM model is provided in Fig. 5.
The figure shows the spatially averaged changes for the +3 °C
warming considering different climatic variables driving Eq. 2
(see Table 1). Several models result in larger changes and larger
spread, making the model based on temperature a lower limit to
the increase in BA. All scenarios indicate a large increase in BA at
this warming level.

A common issue of statistical model predictions is that they
make inferences based on extrapolation of the model outside its
range of calibration. In our case, it is likely that for the hotter
scenarios, temperature estimations exceed the range of historical
values used for fitting the relationship of Eq. 2. While only 7 and
9 of the 40 eco-regions considered show temperatures that exceed
the warmest historical values in the +1.5 and +2 °C future
periods, for the +3 °C period, such regions are 16 (i.e., 40% of
the domain). The exclusion of these areas has very little effect on
the estimate of the impacts on BA, as shown in Fig. 6 (comparing
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Fig. 3 Burned area changes in Mediterranean Europe with the stationary and the non-stationary models. Burned area changes (in %) are shown for each
warming level considering the stationary model SM (i.e., using Eq. 3) and the non-stationary model NSM (i.e., using Eq. 4). Boxplots show the uncertainty
from the ensemble of RCM projections (SM-RCM or NSM-RCM) and accounting for both RCM and regression model uncertainties (1000 bootstrap
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the boxes with and without extrapolation), especially for the +1.5
and +2 °C scenarios. The future increase in BA, which is larger as
the warming level increases, is thus confirmed. To further address
the extrapolation issue, we also estimate BA changes when
constraining Ty and SPEI projections to historical extremes
(following ref.52). In this case, we found no remarkable changes in
our results, with only a slightly lower increase in BA. This result is
presumably due to the partial compensation of two competing
effects. On the one hand, constraining SPEI projections means
that the BA values will be lower (following Eq. 1). On the other
hand, constraining Ty means that the climate-fire adjustments of
Eq. 2, that led to lower BA changes, are also lower.

These results have been obtained considering bias-adjusted RCM
data. Bias correction methods directly adjust the target variable
projected by the climate model, using the corresponding local
observations as references. One serious problem that may affect
downscaling/bias correction methods is that they can modify the
raw climate change signal (see, e.g.,53–55). The comparison between
bias-corrected BA projections and the corresponding obtained with
the direct RCM output (i.e., without bias correction) provide an
estimation of the impact of the bias correction method in the results
and, above all, allows us to assess whether the bias correction
method preserves the climate change signal of the RCMs in the BA
impacts. Although some differences appear, the main conclusions
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are confirmed also considering the direct RCM outputs, i.e., without
performing any bias corrections (Fig. 7).

To summarise, our findings substantially align with the results
of previous studies that assessed the impact of climate change on
BA in the Mediterranean Basin, although comparisons are
necessary limited since different scenarios, future periods and
models are considered here. In ref.22 the authors estimated
increases of up to 66 and 140% in 2071–2100 relative to
1985–2004 under two IPCC scenarios, B2 and A2, respectively. In
ref.56, the authors obtained a 150–220% BA increase between
2000 and 2090 under A2 scenarios without considering adapta-
tion, whereas they estimated a 74% increase in the adaptation
scenario (prescribed burnings under present climate conditions).
In ref.25, the authors estimated 34% BA increases in Southern
Europe, in 2070–2100 relative to 1960–1990 under the A1B
scenario. These authors attributed such relatively low values to
the projected human ignition/suppression probability and to
the role of vegetation productivity. In ref.26, the authors
employed different fire-dynamic vegetation coupled models
and increases of 14–17% and 60–71% were obtained between
1981–2000 and 2081–2100 periods under RCPs 2.6 and 8.5,
respectively.

As a word of caution, we note that the methodology employed
here has some limitations. Presumably, the complex relationships
between climate, vegetation and fires hamper the applicability of
fire impact models to conditions that are very different from the
current ones. For these reasons, our estimate of fire response
should be considered more robust for a few decades in the future,
when climatic conditions should not be dramatically different
from the current ones. Our model does not consider future
changes in fire management policies, land-use and land-cover
change, or in ignition patterns mainly because reliable projections
for these drivers are not available. Future analyses could include
the use of more complex drought metrics (e.g., that account for
the response of plant transpiration induced by changing atmo-
spheric CO2 conditions57). A possible extension of the summer
fire regime to previous months in spring and/or later months in
autumn should also be explored. Despite these limitations, we
illustrate that plausible levels of modification of the SPEI-BA links
could reduce the impacts of climate change on BA, but still, at or
above 1.5 °C of warming, Mediterranean BA is projected to
increase, and at higher warming levels this increase becomes even
larger. These results, in combination with the increase in societal
exposure to large wildfires in recent years58, call for a rethinking
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of current management strategies59. Climate change effects could
overcome fire prevention efforts, implying that more fire
management efforts must be planned in the near future. The
negative measured trend of BA in Mediterranean Europe in
the past few decades can be explained by an increased effort in
fire management and prevention8. However, keeping fire
management actions at the current level might not be sufficient
to balance a future increase in droughts. In this sense, the ability
to model the link between climate and fire is crucial to identifying
key actions in adaptation strategies. In particular, seasonal climate
forecasts may enable a more effective and dynamic adaptation to
climate variability and change, offering an under-exploited
opportunity to reduce the fire impact of adverse climate
conditions60.

In summary, our results support the statement of the Paris
Agreement that reports that limiting the temperature increase to
1.5 °C would “significantly reduce the risks and impacts of climate
change”.

Methods
Fire and drought data. We obtained monthly BA (larger >1 ha) data from the
EFFIS61 dataset at the NUTS3 level (2006 version; see http://ec.europa.eu/eurostat/
web/nuts/ for more details) for Portugal, Spain, southern France, Italy and Greece,
for the period 1985–2011. We analysed the BA of the summer months from June to
September. This is the period with large fires, which account for 86% of the annual
BA. For more details on this dataset, see ref.8.

We use the standard precipitation and evaporation index (SPEI43) to estimate
drought intensity. SPEI uses as an input a water balance, taking into account the
total accumulated precipitation and PET. The Hargreaves PET estimation method
has been considered, taking into account temperature and precipitation in its
formulation (plus the latitudinal correction factor). SPEI can be represented at
different time scales and is thus able to effectively represent the multi-scalar aspect
of droughts. Here, we consider three time scales, namely, 3, 6, and 12 months, as in
refs.9,62. We calculated the observed SPEI for the period 1950–2015 from the
publicly available gridded data set from the Climatic Research Unit of the
University of East Anglia (CRU TS v4.0; 0.50 degree resolution63). PET and SPEI
were calculated using the R package SPEI, version 1.7.

The future SPEI projections are calculated using two ensembles of nine regional
climate simulations (involving four different RCMs and five GCM runs;
Supplementary Table 2) spanning the period of 1970–2099. Both include the same
members, but one assumes the moderate RCP4.5 and the other assumes the more
extreme RCP8.5 scenario. The simulations were performed under the umbrella of
the Euro-CORDEX project64, covering Europe with a spatial resolution of 0.11
degrees both in latitude and longitude, the finest so far in this type of climatological
multi-model and multi-scenario experiment. These are the RCMs that had the
necessary variables at the moment of the design of our study, and they have been
extensively validated (see, e.g.,64,65). The Euro-CORDEX data are interpolated to
the regular 0.5 degree resolution grid of the CRU database using nearest-
neighbours prior to any other further transformation. For each RCM, the
parameters that are required to calculate the SPEI are determined relative to the
distribution of the reference period 1971–2000 at each grid point. The fitted
parameters are then used to calculate the historical and future SPEI series.

We bias corrected the RCM monthly climatic variables by applying a simple
linear scaling applied at each grid point in the reference regular grid (CRU, 0.5
degree resolution). For PRE and PET, a scaling factor based on the ratio of the
long-term mean (over the period 1971–2000) observed and simulated data are used
as these are variables with a lower bound. For T, the difference between the long-
term mean observed data and simulated data are used to correct the raw data. This
is a simple and parsimonious bias correction method that intends to correct the
mean bias. This method assumes that the bias is stationary in different climates
and, correcting for the bias in the mean, corrects biases in the variance and
quantiles of the distribution of the climatic variable. The raw SPEI projections have
also been computed for benchmarking purposes.

The climate warming periods (1.5, 2, and 3 °C) are reported in Supplementary
Table 3 and were selected for each simulation following the procedure described in
ref.34. The time windows are defined as the earliest 30-year periods with time-
averaged global mean temperature increase, as projected by the RCM-driving GCM
simulation, equals to 1.5, 2, and 3 °C warming, respectively, compared to the ’pre-
industrial’ period 1881–1910. While for the 1.5 and 2 °C periods, we used the
ensemble of nine simulations for each of the two RCPs (i.e., an ensemble of 18
members), for the 3 °C period, we consider only the simulations for the
RCP8.5 scenario as this is the only scenario for which all the GCMs reach this
warming within the study period.

The BA and the climatic data are then aggregated considering the 44 eco-
regions defined by combining the available fire information with the environmental
zones defined by ref.66 (see Supplementary Fig. 4 and ref.9 for more details).

Specifically, the SPEI data (observed and simulated) are calculated for each point of
the 0.5 grid and then spatially averaged over these eco-regions.

Drought-fire model development. The procedure for developing the SPEI-BA
model, following the work of ref.9, includes the following steps. First, we normalise
the positively skewed BA variables by applying a log transformation (i.e., Y= log
(BA)). Then, to identify the SPEI indicators, we (i) compute the correlation
between log(BA) and SPEIsc,m, with sc= (3,6,12), m= (0,7), i.e., summer and
previous spring months; (ii) calculate the significance of the individual correlations
(subject to the relationship between BA and SPEI being negative, i.e., a one-tailed
hypothesis test). We estimate the correlation significance using bootstrap resam-
pling, where one of the two variables is shuffled 1000 times and new correlations
are computed. To account for the spatial dependence structure of the data, we use
the same resampling sequence for all grid points within each bootstrap iteration (as
in ref.67); (iii) we test the p-values of the previous step for multiple testing with a
false discovery rate (FDR) test68; and (iv) we seek the minimum correlation values
among all the significant correlations calculated in the previous steps. We also test
for the presence of a relationship with the antecedent climate variable. However, no
significant relationships have been found. When the BA or the SPEI time series
exhibit a significant trend (i.e., p-value <0.05, assessed with the Mann–Kendall
test), we fit the model including the predictor time T. When no trend is present, β3
is set to zero. The regression coefficients are estimated using a robust regression
procedure that adopts iteratively reweighted least squares with a bisquare weighting
function69. We estimate the uncertainty of the parameters of the SPEI-BA model
using bootstrap resampling, where the predictand and predictor pairs are drawn
randomly with replacement 1000 times and new regression models are fit to the
data. To account for the spatial dependence structure of the data, we use the same
resampling sequence for all grid points within each bootstrap iteration.

The models are also assessed by means of a leave-one-out cross-validation, i.e.,
excluding the tested year when computing the model parameters.

We fit the model of Eq. 2 with and without considering the eco-region of the
Alps (Supplementary Fig. 4), as this region seems to be an outlier (see the point
with an averaged temperature below 5 °C in Fig. 2). Excluding this region, we
obtain the model: β2=−1.8+ 0.07 Ty (bootstrapped 95% confidence intervals
−2.2 to −1.4 for the intercept and 0.04 to 0.10 for the slope), which is similar to the
model that includes this point, β2=−1.6+ 0.06 Ty (95% confidence intervals of
−2.1 to −1.4 for the intercept term and of 0.04 to 0.09 for the slope).

Code availability. On behalf of reproducibility and applicability, the codes used in
this work are available for research purposes by contacting the corresponding
author. In any case the codes used for the data processing are mainly based on open
source software: the Climate Data Operators (CDO version 1.7.2; functions:
remapbil, remapcon) available from https://code.mpimet.mpg.de/projects/cdo and
the R “Language and Environment for Statistical Computing” (R version 3.4.3)
available from https://www.r-project.org/. Specifically, climate data access and
processing has been undertaken using the open source R packages of the climate4R
framework (http://www.meteo.unican.es/climate4R). A fully reproducible worked
example of Euro-CORDEX data retrieval and calculation of observed and bias-
corrected SPEI projections is provided online at http://www.meteo.unican.es/work/
climate4r/drought4R/drought4R_notebook.html. The notebook source code is also
available at https://github.com/SantanderMetGroup/notebooks. The climate–fire
model development, the assessment of the climate and burned area projections, as
well as their uncertainties, are mainly based on Matlab codes written by M.T. that
are available for research purposes from the corresponding author upon request.

Data availability
EFFIS data can be retrieved from the European Forest Fire Information System (http://
forest.jrc.ec.europa.eu/effis/); Observed CRU data can be obtained from the University of
East Anglia (https://crudata.uea.ac.uk/cru/data/hrg/). The EURO-CORDEX RCM
models are publicly available through the Earth System Grid Federation infrastructure
(ESGF, https://esgf.llnl.gov). In order to ensure the full reproducibility of the results, the
authors will provide the data (observed and simulated) used in this study for research
purposes to interested readers.
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