160 research outputs found

    Epitope-dependent functional effects of celiac disease autoantibodies on transglutaminase 2

    Get PDF
    Transglutaminase 2 (TG2) is a Ca(2+)-dependent cross-linking enzyme involved in the pathogenesis of CD. We have previously characterized a panel of anti-TG2 mAbs generated from gut plasma cells of celiac patients and identified four epitopes (epitopes 1–4) located in the N-terminal part of TG2. Binding of the mAbs induced allosteric changes in TG2. Thus, we aimed to determine whether these mAbs could influence enzymatic activity through modulation of TG2 susceptibility to oxidative inactivation and Ca(2+) affinity. All tested epitope 1 mAbs, as well as 679-14-D04, which recognizes a previously uncharacterized epitope, prevented oxidative inactivation and increased Ca(2+) sensitivity of TG2. We have identified crucial residues for binding of 679-14-D04 located within a Ca(2+) binding site. Epitope 1 mAbs and 679-14-D04, although recognizing separate epitopes, behaved similarly when assessing their effect on TG2 conformation, suggesting that the shared effects on TG2 function can be explained by induction of the same conformational changes. None of the mAbs targeting other epitopes showed these effects, but epitope 2 mAbs reduced the rate of TG2-catalyzed reactions. Collectively, these effects could be relevant to the pathogenesis of CD. In A20 B cells transduced with TG2-specific B-cell receptor, epitope 2-expressing cells had poorer uptake of TG2-gluten complexes and were less efficient in gluten epitope presentation to T cells than cells expressing an epitope 1 receptor. Thus, the ability of epitope 1-targeting B cells to keep TG2 active and protected from oxidation might explain why generation of epitope 1-targeting plasma cells seems to be favored in celiac patients

    The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    Get PDF
    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia

    Conformational dynamics of alpha-synuclein:insights from mass spectrometry

    Get PDF
    The aggregation and deposition of alpha-synuclein in Lewy bodies is associated with the progression of Parkinson's disease. Here, Mass Spectrometry (MS) is used in combination with Ion Mobility (IM), chemical crosslinking and Electron Capture Dissociation (ECD) to probe transient structural elements of alpha-synuclein and its oligomers. Each of these reveals different aspects of the conformational heterogeneity of this 14 kDa protein. IM-MS analysis indicates that this protein is highly disordered, presenting in positive ionisation mode with a charge state range of 5 <= z <= 21 for the monomer, along with a collision cross section range of similar to 1600 angstrom(2)). Chemical crosslinking applied in conjunction with IM-MS captures solution phase conformational families enabling comparison with those exhibited in the gas phase. Crosslinking IM-MS identifies 3 distinct conformational families, Compact (similar to 1200 angstrom(2)), Extended (similar to 1500 angstrom(2)) and Unfolded (similar to 2350 angstrom(2)) which correlate with those observed in solution. ECD-Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (ECD-FT-ICR MS) highlights the effect of pH on alpha-synuclein structure, identifying the conformational flexibility of the N and C termini as well as providing evidence for structure in the core and at times the C terminus. A hypothesis is proposed for the variability displayed in the structural rearrangement of alpha-synuclein following changes in solution pH. Following a 120 h aggregation time course, we observe an increase in the ratio of dimer to monomer, but no gross conformational changes in either, beyond the significant variations that are observed day-to-day from this conformationally dynamic protein

    Glycomics using mass spectrometry

    Get PDF
    Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage diseases, autoimmune diseases and cancer

    Protein Structural Dynamics Studied by Mass Spectrometry and Hydrogen/Deuterium Exchange

    No full text
    corecore