68 research outputs found

    Electrochemical titrations and reaction time courses monitored in situ by magnetic circular dichroism spectroscopy

    Get PDF
    Magnetic circular dichroism (MCD) spectra, at ultraviolet–visible or near-infrared wavelengths (185–2000 nm), contain the same transitions observed in conventional absorbance spectroscopy, but their bisignate nature and more stringent selection rules provide greatly enhanced resolution. Thus, they have proved to be invaluable in the study of many transition metal-containing proteins. For mainly technical reasons, MCD has been limited almost exclusively to the measurement of static samples. But the ability to employ the resolving power of MCD to follow changes at transition metal sites would be a potentially significant advance. We describe here the development of a cuvette holder that allows reagent injection and sample mixing within the 50-mm-diameter ambient temperature bore of an energized superconducting solenoid. This has allowed us, for the first time, to monitor time-resolved MCD resulting from in situ chemical manipulation of a metalloprotein sample. Furthermore, we report the parallel development of an electrochemical cell using a three-electrode configuration with physically separated working and counter electrodes, allowing true potentiometric titration to be performed within the bore of the MCD solenoid

    Influence of the heme distal pocket on nitrite binding orientation and reactivity in Sperm Whale myoglobin

    Get PDF
    Nitrite binding to recombinant wild-type Sperm Whale myoglobin (SWMb) was studied using a combination of spectroscopic methods including room-temperature magnetic circular dichroism. These revealed that the reactive species is free nitrous acid and the product of the reaction contains a nitrite ion bound to the ferric heme iron in the nitrito- (O-bound) orientation. This exists in a thermal equilibrium with a low-spin ground state and a high-spin excited state and is spectroscopically distinct from the purely low-spin nitro- (N-bound) species observed in the H64V SWMb variant. Substitution of the proximal heme ligand, histidine-93, with lysine yields a novel form of myoglobin (H93K) with enhanced reactivity towards nitrite. The nitrito-mode of binding to the ferric heme iron is retained in the H93K variant again as a thermal equilibrium of spin-states. This proximal substitution influences the heme distal pocket causing the pKa of the alkaline transition to be lowered relative to wild-type SWMb. This change in the environment of the distal pocket coupled with nitrito-binding is the most likely explanation for the 8-fold increase in the rate of nitrite reduction by H93K relative to WT SWMb

    Opportunities for mesoporous nanocrystalline SnO2 electrodes in kinetic and catalytic analyses of redox proteins

    Get PDF
    PFV (protein film voltammetry) allows kinetic analysis of redox and coupled-chemical events. However, the voltammograms report on the electron transfer through a flow of electrical current such that simultaneous spectroscopy is required for chemical insights into the species involved. Mesoporous nanocrystalline SnO2 electrodes provide opportunities for such ‘spectroelectrochemical’ analyses through their high surface area and optical transparency at visible wavelengths. Here, we illustrate kinetic and mechanistic insights that may be afforded by working with such electrodes through studies of Escherichia coli NrfA, a pentahaem cytochrome with nitrite and nitric oxide reductase activities. In addition, we demonstrate that the ability to characterize electrocatalytically active protein films by MCD (magnetic circular dichroism) spectroscopy is an advance that should ultimately assist our efforts to resolve catalytic intermediates in many redox enzymes

    A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella

    Get PDF
    CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H2O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately −240 mV) and low-spin (approximately −110, −190 and −265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (Em=−80 mV) in the presence of NADH (Em=−320 mV) and an NADH–menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.</jats:p

    Are quasars accreting at super-Eddington rates?

    Get PDF
    In a previous paper, Collin & Hur\'e (2001), using a sample of Active Galactic Nuclei (AGN) where the mass has been determined by reverberation studies (Kaspi et al. 2000), have shown that if the optical luminosity is emitted by a steady accretion disc, about half of the objects are accreting close to or higher than the Eddington rate. We conclude here that this result is unavoidable, unless the masses are strongly underestimated by reverberation studies, which does not seem to be the case. There are three issues to the problem: 1. Accretion proceeds at Eddington or super-Eddington rates through thick discs. Several consequences follow: an anti-correlation between the line widths of the lines and the Eddington ratios, and a decrease of the Eddington ratio with an increasing black hole mass. Extrapolated to all quasars, these results imply that the amount of mass locked in massive black holes should be larger than presently thought. 2. The optical luminosity is not produced directly by the gravitational release of energy, and super-Eddington rates are not required. The optical luminosity has to be emitted by a dense and thick medium located at large distances from the center (103^3 to 10410^4 gravitational radii). It can be due to reprocessing of the X-ray photons from the central source in a geometrically thin warped disc, or in dense "blobs" forming a geometrically thick system, which can be a part of the accretion flow or the basis of an outflow. 3. Accretion discs are completely "non standard". Presently neither the predictions of models nor the observed spectral distributions are sufficient to help choosing between these solutions.Comment: 16 pages, 11 figures, accepted in A&

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex

    Get PDF
    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the “Microprocessor”) is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet–visible (UV–vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys–) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys–/Cys–) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8’s optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV–vis absorption spectra of the FeII and FeII–CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron–nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV–vis MCD and near-infrared MCD provide data consistent with this conclusion. UV–vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous–CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform

    Mechanisms of iron- and O₂-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.

    Get PDF
    RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 ”M, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator

    Redox-dependent control of i-Motif DNA structure using copper cations

    Get PDF
    Previous computational studies have shown that Cu+ can act as a substitute for H+ to support formation of cytosine (C) dimers with similar conformation to the hemi-protonated base pair found in i-motif DNA. Through a range of biophysical methods, we provide experimental evidence to support the hypothesis that Cu+ can mediate C–C base pairing in i-motif DNA and preserve i-motif structure. These effects can be reversed using a metal chelator, or exposure to ambient oxygen in the air that drives oxidation of Cu+ to Cu2+, a comparatively weak ligand. Herein, we present a dynamic and redox-sensitive system for conformational control of an i-motif forming DNA sequence in response to copper cations
    • 

    corecore