16 research outputs found

    Heparanase Levels Are Elevated in the Urine and Plasma of Type 2 Diabetes Patients and Associate with Blood Glucose Levels

    Get PDF
    Heparanase is an endoglycosidase that specifically cleaves heparan sulfate side chains of heparan sulfate proteoglycans. Utilizing an ELISA method capable of detection and quantification of heparanase, we examined heparanase levels in the plasma and urine of a cohort of 29 patients diagnosed with type 2 diabetes mellitus (T2DM), 14 T2DM patients who underwent kidney transplantation, and 47 healthy volunteers. We provide evidence that heparanase levels in the urine of T2DM patients are markedly elevated compared to healthy controls (1162±181 vs. 156±29.6 pg/ml for T2DM and healthy controls, respectively), increase that is statistically highly significant (P<0.0001). Notably, heparanase levels were appreciably decreased in the urine of T2DM patients who underwent kidney transplantation, albeit remained still higher than healthy individuals (P<0.0001). Increased heparanase levels were also found in the plasma of T2DM patients. Importantly, urine heparanase was associated with elevated blood glucose levels, implying that glucose mediates heparanase upregulation and secretion into the urine and blood. Utilizing an in vitro system, we show that insulin stimulates heparanase secretion by kidney 293 cells, and even higher secretion is observed when insulin is added to cells maintained under high glucose conditions. These results provide evidence for a significant involvement of heparanase in diabetic complications

    Developmentally Regulated Sphingolipid Degradation in Leishmania major

    Get PDF
    Leishmania parasites alternate between extracellular promastigotes in sandflies and intracellular amastigotes in mammals. These protozoans acquire sphingolipids (SLs) through de novo synthesis (to produce inositol phosphorylceramide) and salvage (to obtain sphingomyelin from the host). A single ISCL (Inositol phosphoSphingolipid phospholipase C-Like) enzyme is responsible for the degradation of both inositol phosphorylceramide (the IPC hydrolase or IPCase activity) and sphingomyelin (the SMase activity). Recent studies of a L. major ISCL-null mutant (iscl−) indicate that SL degradation is required for promastigote survival in stationary phase, especially under acidic pH. ISCL is also essential for L. major proliferation in mammals. To further understand the role of ISCL in Leishmania growth and virulence, we introduced a sole IPCase or a sole SMase into the iscl− mutant. Results showed that restoration of IPCase only complemented the acid resistance defect in iscl− promastigotes and improved their survival in macrophages, but failed to recover virulence in mice. In contrast, a sole SMase fully restored parasite infectivity in mice but was unable to reverse the promastigote defects in iscl−. These findings suggest that SL degradation in Leishmania possesses separate roles in different stages: while the IPCase activity is important for promastigote survival and acid tolerance, the SMase activity is required for amastigote proliferation in mammals. Consistent with these findings, ISCL was preferentially expressed in stationary phase promastigotes and amastigotes. Together, our results indicate that SL degradation by Leishmania is critical for parasites to establish and sustain infection in the mammalian host
    corecore