420 research outputs found

    Gravitational multi-NUT solitons, Komar masses and charges

    Get PDF
    Generalising expressions given by Komar, we give precise definitions of gravitational mass and solitonic NUT charge and we apply these to the description of a class of Minkowski-signature multi-Taub-NUT solutions without rod singularities. A Wick rotation then yields the corresponding class of Euclidean-signature gravitational multi-instantons.Comment: Some references adde

    A new wrinkle on the enhancon

    Get PDF
    We generalize the basic enhancon solution of Johnson, Peet and Polchinski by constructing solutions without spherical symmetry. A careful consideration of boundary conditions at the enhancon surface indicates that the interior of the supergravity solution is still flat space in the general case. We provide some explicit analytic solutions where the enhancon locus is a prolate or oblate sphere.Comment: 19 pages, no figure

    Black Rings, Supertubes, and a Stringy Resolution of Black Hole Non-Uniqueness

    Full text link
    In order to address the issues raised by the recent discovery of non-uniqueness of black holes in five dimensions, we construct a solution of string theory at low energies describing a five-dimensional spinning black ring with three charges that can be interpreted as D1-brane, D5-brane, and momentum charges. The solution possesses closed timelike curves (CTCs) and other pathologies, whose origin we clarify. These pathologies can be avoided by setting any one of the charges, e.g. the momentum, to zero. We argue that the D1-D5-charged black ring, lifted to six dimensions, describes the thermal excitation of a supersymmetric D1-D5 supertube, which is in the same U-duality class as the D0-F1 supertube. We explain how the stringy microscopic description of the D1-D5 system distinguishes between a spherical black hole and a black ring with the same asymptotic charges, and therefore provides a (partial) resolution of the non-uniqueness of black holes in five dimensions.Comment: 33 pages, 1 figur

    The Enhancon, Black Holes, and the Second Law

    Full text link
    We revisit the physics of five-dimensional black holes constructed from D5- and D1-branes and momentum modes in type IIB string theory compactified on K3. Since these black holes incorporate D5-branes wrapped on K3, an enhancon locus appears in the spacetime geometry. With a `small' number of D1-branes, the entropy of a black hole is maximised by including precisely half as many D5-branes as there are D1-branes in the black hole. Any attempts to introduce more D5-branes, and so reduce the entropy, are thwarted by the appearance of the enhancon locus above the horizon, which then prevents their approach. The enhancon mechanism thereby acts to uphold the Second Law of Thermodynamics. This result generalises: For each type of bound state object which can be made of both types of brane, we show that a new type of enhancon exists at successively smaller radii in the geometry, again acting to prevent any reduction of the entropy just when needed. We briefly explore the appearance of the enhancon in the black hole interior.Comment: 22 pages, 2 figures, latex, epsfig (v2: Fixed trivial typos.

    Hawking Temperature in Taub-NUT (A)dS spaces via the Generalized Uncertainty Principle

    Full text link
    Using the extended forms of the Heisenberg uncertainty principle from string theory and the quantum gravity theory, we drived Hawking temperature of a Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as asymptotically locally flat and breakdown of the area theorem of the horizon for the black holes, we show that the corrections to Hawking temperature by the generalized versions of the the Heisenberg uncertainty principle increases like the Schwarzschild-(A)dS black hole and give the reason why the Taub-Nut-(A)dS metric may have AdS/CFT dual picture.Comment: version published in General Relativity and Gravitatio

    A Note on Conserved Charges of Asymptotically Flat and Anti-de Sitter Spaces in Arbitrary Dimensions

    Full text link
    The calculation of conserved charges of black holes is a rich problem, for which many methods are known. Until recently, there was some controversy on the proper definition of conserved charges in asymptotically anti-de Sitter (AdS) spaces in arbitrary dimensions. This paper provides a systematic and explicit Hamiltonian derivation of the energy and the angular momenta of both asymptotically flat and asymptotically AdS spacetimes in any dimension D bigger or equal to 4. This requires as a first step a precise determination of the asymptotic conditions of the metric and of its conjugate momentum. These conditions happen to be achieved in ellipsoidal coordinates adapted to the rotating solutions.The asymptotic symmetry algebra is found to be isomorphic either to the Poincare algebra or to the so(D-1, 2) algebra, as expected. In the asymptotically flat case, the boundary conditions involve a generalization of the parity conditions, introduced by Regge and Teitelboim, which are necessary to make the angular momenta finite. The charges are explicitly computed for Kerr and Kerr-AdS black holes for arbitrary D and they are shown to be in agreement with thermodynamical arguments.Comment: 27 pages; v2 : references added, minor corrections; v3 : replaced to match published version forthcoming in General Relativity and Gravitatio

    ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases

    Get PDF
    The objective of this document was to standardise published cardiopulmonary exercise testing (CPET) protocols for improved interpretation in clinical settings and multicentre research projects. This document: 1) summarises the protocols and procedures used in published studies focusing on incremental CPET in chronic lung conditions; 2) presents standard incremental protocols for CPET on a stationary cycle ergometer and a treadmill; and 3) provides patients’ perspectives on CPET obtained through an online survey supported by the European Lung Foundation. We systematically reviewed published studies obtained from EMBASE, Medline, Scopus, Web of Science and the Cochrane Library from inception to January 2017. Of 7914 identified studies, 595 studies with 26 523 subjects were included. The literature supports a test protocol with a resting phase lasting at least 3 min, a 3-min unloaded phase, and an 8- to 12-min incremental phase with work rate increased linearly at least every minute, followed by a recovery phase of at least 2–3 min. Patients responding to the survey (n=295) perceived CPET as highly beneficial for their diagnostic assessment and informed the Task Force consensus. Future research should focus on the individualised estimation of optimal work rate increments across different lung diseases, and the collection of robust normative data.The document facilitates standardisation of conducting, reporting and interpreting cardiopulmonary exercise tests in chronic lung diseases for comparison of reference data, multi-centre studies and assessment of interventional efficacy. http://bit.ly/31SXeB

    Rotating Black Branes in the presence of nonlinear electromagnetic field

    Full text link
    In this paper, we consider a class of gravity whose action represents itself as a sum of the usual Einstein-Hilbert action with cosmological constant and an U(1)U(1) gauge field for which the action is given by a power of the Maxwell invariant. We present a class of the rotating black branes with Ricci flat horizon and show that the presented solutions may be interpreted as black brane solutions with two event horizons, extreme black hole and naked singularity provided the parameters of the solutions are chosen suitably. We investigate the properties of the solutions and find that for the special values of the nonlinear parameter, the solutions are not asymptotically anti-deSitter. At last, we obtain the conserved quantities of the rotating black branes and find that the nonlinear source effects on the electric field, the behavior of spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ

    Fetal sex-specific differences in gestational age at delivery in pre-eclampsia: a meta-analysis

    Get PDF
    Background: : Pre-eclampsia (PE) is a major pregnancy disorder complicating up to 8% of pregnancies. Increasing evidence indicates a sex-specific interplay between the mother, placenta and fetus. This may lead to different adaptive mechanisms during pregnancy.Methods: We performed an individual participant data meta-analysis to determine associations of fetal sex and PE, with specific focus on gestational age at delivery in PE. This was done on 219 575 independent live-born singleton pregnancies, with a gestational age at birth between 22.0 and 43.0 weeks of gestation, from 11 studies participating in a worldwide consortium of international research groups focusing on pregnancy.Results: Of the women, 9033 (4.1%) experienced PE in their pregnancy and 48.8% of the fetuses were female versus 51.2% male. No differences in the female/male distribution were observed with respect to term PE (delivered ≥ 37 weeks). Preterm PE (delivered < 37 weeks) was slightly more prevalent among pregnancies with a female fetus than in pregnancies with a male fetus [odds ratio (OR) 1.11, 95% confidence interval (CI) 1.02-1.21]. Very preterm PE (delivered < 34 weeks) was even more prevalent among pregnancies with a female fetus as compared with pregnancies with a male fetus (OR 1.36, 95% CI 1.17-1.59).Conclusions: Sexual dimorphic differences in the occurrence of PE exist, with preterm PE being more prevalent among pregnancies with a female fetus as compared with pregnancies with a male fetus and with no differences with respect to term PE

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore