3,468 research outputs found

    A relation between moduli space of D-branes on orbifolds and Ising model

    Full text link
    We study D-branes transverse to an abelian orbifold C^3/Z_n Z_n. The moduli space of the gauge theory on the D-branes is analyzed by combinatorial calculation based on toric geometry. It is shown that the calculation is related to a problemto count the number of ground states of an antiferromagnetic Ising model. The lattice on which the Ising model is defined is a triangular one defined on the McKay quiver of the orbifold.Comment: 20 pages, 13 figure

    Fair Housing Act: Discrimination in the Distribution of Home Financing

    Get PDF
    Laufman v. Oakley Building and Loan Co., 408 F. Supp. 489 (S.D. Ohio 1976) In February of 1976, Federal Judge David S. Porter of the Western Division of the Southern District of Ohio handed down a decision which significantly affects home financing organizations in this country. The ruling in Laufman v. Oakley Building and Loan Co., marked the first federal court decision on redlining, that is, refusal to make mortgage loans on residential property in a racially transitional neighborhood, regardless of the prospective borrower\u27s creditworthiness or the condition of the borrower\u27s property. Judge Porter held that redlining is illegal under the Civil Rights Act of 1968. The purpose of Title VIII of the 1968 Civil Rights Act, better known as the Fair Housing Act, is clearly expressed in the legislation\u27s first sentence: It is the policy of the United States to provide, within constitutional limitations, for fair housing throughout the United States

    A deformed QRPA formalism for single and two-neutrino double beta decay

    Full text link
    We use a deformed QRPA formalism to describe simultaneously the energy distributions of the single beta Gamow-Teller strength and the two-neutrino double beta decay matrix elements. Calculations are performed in a series of double beta decay partners with A = 48, 76, 82, 96, 100, 116, 128, 130, 136 and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller strength distributions in single beta decay, as well as the sensitivity of the double beta decay matrix elements to the deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of suppression of the two-neutrino double beta decay. The double beta decay matrix elements are found to have maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when differences in deformations increase. We remark the importance of a proper simultaneous description of both double beta decay and single Gamow-Teller strength distributions. Finally, we conclude that for further progress in the field it would be useful to improve and complete the experimental information on the studied Gamow-Teller strengths and nuclear deformations.Comment: 33 pages, 19 figures. To be published in Phys. Rev.

    Simulation of an 1857-like Mw 7.9 San Andreas Fault Earthquake and the Response of Tall Steel Moment Frame Buildings in Southern California – A Prototype Study

    Get PDF
    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 360 km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had significant long-period content (2-8 s), and the objective of this study is to quantify the impact of such an earthquake on two 18-story steel moment frame building models, hypothetically located at 636 sites on a 3.5 km grid in southern California. End-to-end simulations include modeling the source and rupture of a fault at one end, numerically propagating the seismic waves through the earth structure, simulating the damage to engineered structures and estimating the economic impact at the other end using high-performance computing. In this prototype study, we use an inferred finite source model of the magnitude 7.9, 2002 Denali fault earthquake in Alaska, and map it onto the San Andreas fault with the rupture originating at Parkfield and propagating southward over a distance of 290 km. Using the spectral element seismic wave propagation code, SPECFEM3D, we simulate an 1857-like earthquake on the San Andreas fault and compute ground motions at the 636 analysis sites. Using the nonlinear structural analysis program, FRAME3D, we subsequently analyze 3-D structural models of an existing tall steel building designed using the 1982 Uniform Building Code (UBC), as well as one designed according to the 1997 UBC, subjected to the computed ground motion at each of these sites. We summarize the performance of these structural models on contour maps of peak interstory drift. We then perform an economic loss analysis for the two buildings at each site, using the Matlab Damage and Loss Analysis (MDLA) toolbox developed to implement the PEER loss-estimation methodology. The toolbox includes damage prediction and repair cost estimation for structural and non-structural components and allows for the computation of the mean and variance of building repair costs conditional on engineering demand parameters (i.e. inter-story drift ratios and peak floor accelerations). Here, we modify it to treat steel-frame high-rises, including aspects such as mechanical, electrical and plumbing systems, traction elevators, and the possibility of irreparable structural damage. We then generate contour plots of conditional mean losses for the San Fernando and the Los Angeles basins for the pre-Northridge and modern code-designed buildings, allowing for comparison of the economic effects of the updated code for the scenario event. In principle, by simulating multiple seismic events, consistent with the probabilistic seismic hazard for a building site, the same basic approach could be used to quantify the uncertain losses from future earthquakes

    Phase transitions in systems with two species of molecular motors

    Full text link
    Systems with two species of active molecular motors moving on (cytoskeletal) filaments into opposite directions are studied theoretically using driven lattice gas models. The motors can unbind from and rebind to the filaments. Two motors are more likely to bind on adjacent filament sites if they belong to the same species. These systems exhibit (i) Continuous phase transitions towards states with spontaneously broken symmetry, where one motor species is largely excluded from the filament, (ii) Hysteresis of the total current upon varying the relative concentrations of the two motor species, and (iii) Coexistence of traffic lanes with opposite directionality in multi-filament systems. These theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in Europhys. Lett. (http://www.edpsciences.org/epl

    Weak Interaction Rates Of sd-Shell Nuclei In Stellar Environment Calculated in the Proton-Neutron Quasiparticle Random Phase Approximation

    Get PDF
    Allowed weak interaction rates for sd-shell nuclei in stellar environment are calculated using a generalized form of proton-neutron quasiparticle RPA model with separable Gamow-Teller forces. Twelve different weak rates are calculated for each nucleus as a function of temperature and density. This project consists of calculation of weak rates for a total of 709 nuclei with masses ranging from A = 18 to 100. This paper contains calculated weak rates for sd-shell nuclei. The calculated capture and decay rates take into consideration the latest experimental energy levels and ft value compilations. The results are also compared with earlier works. Particle emission processes from excited states, previously ignored, are taken into account, and are found to significantly affect some beta decay rates.Comment: 64 pages, 17 figures, rate tables are presented in an abbreviated form to save space. Complete rate tables can be seen in the original pape

    Stepwise Projection: Toward Brane Setups for Generic Orbifold Singularities

    Get PDF
    The construction of brane setups for the exceptional series E6,E7,E8 of SU(2) orbifolds remains an ever-haunting conundrum. Motivated by techniques in some works by Muto on non-Abelian SU(3) orbifolds, we here provide an algorithmic outlook, a method which we call stepwise projection, that may shed some light on this puzzle. We exemplify this method, consisting of transformation rules for obtaining complex quivers and brane setups from more elementary ones, to the cases of the D-series and E6 finite subgroups of SU(2). Furthermore, we demonstrate the generality of the stepwise procedure by appealing to Frobenius' theory of Induced Representations. Our algorithm suggests the existence of generalisations of the orientifold plane in string theory.Comment: 22 pages, 3 figure

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.851025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.361024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.211025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions

    The Pauli principle, QRPA and the two-neutrino double beta decay

    Full text link
    We examine the violation of the Pauli exclusion principle in the Quasiparticle Random Phase Approximation (QRPA) calculation of the two-neutrino double beta decay matrix elements, which has its origin in the quasi-boson approximation. For that purpose we propose a new renormalized QRPA with proton-neutron pairing method (full-RQRPA) for nuclear structure studies, which includes ground state correlation beyond the QRPA. This is achieved by using of renormalized quasi-boson approximation, in which the Pauli exclusion principle is taken into account more carefully. The full-RQRPA has been applied to two-neutrino double beta decay of 76Ge^{76}Ge, 82Se^{82}Se, 128Te^{128}Te and 130Te^{130}Te. The nuclear matrix elements have been found significantly less sensitive to the increasing strength of particle-particle interaction in the physically interesting region in comparison with QRPA results. The strong differences between the results of both methods indicate that the Pauli exclusion principle plays an important role in the evaluation of the double beta decay. The inclusion of the Pauli principle removes the difficulties with the strong dependence on the particle-particle strength gppg_{pp} in the QRPA on the two-neutrino double beta decay.Comment: Accepted for publication in Nucl. Phys. A, 22 pages, including 5 figures, LaTeX (using REVTeX and epsfig-style

    Trademark: Compulsory Licensing as a Remedy for Violation of Section 5 of the Federal Trade Commission Act

    Get PDF
    In re Borden, Inc., FTC Dkt. No. 8978 (Aug. 19, 1976). The interface of trademark and antitrust law has for some time generated controversy among various segments of the legal profession. The heart of the debate has centered on the need to harmonize the preservation of economic competition, which is the goal of the antitrust laws,\u27 with the entrepreneur\u27s interest in maintaining the undivided use of the mechanism by which his product or service is identified-his trademark. The achievement of harmony between these ends depends, therefore, upon a certain characterization of the trademark; that is, the particular social and economic functions which are attributed to trademarks must be examined in the light of the proscriptions of the antitrust laws. An appropriate focus for such a discourse is a case recently before the Federal Trade Commission (FTC), In re Borden, Inc. In-that case the administrative law judge, before whom the complaint was initially heard, ordered the respondent, Borden, to license its ReaLemon trademark to all others who wished to compete in the marketing and sale of reconstituted lemon juice, the trademark product. This remedy was thought necessary in order to disperse the monopoly power which Borden had been found to possess in that market, in violation of section 5 of the Federal Trade Commission Act
    corecore