129 research outputs found

    Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2ā€²-O-[2-(methoxy)ethyl]-2-thiothymidines

    Get PDF
    Substitution of oxygen atoms by sulfur at various locations in the nucleic acid framework has led to analogs such as the DNA phosphorothioates and 4ā€²-thio RNA. The phosphorothioates are excellent mimics of DNA, exhibit increased resistance to nuclease degradation compared with the natural counterpart, and have been widely used as first-generation antisense nucleic acid analogs for applications in vitro and in vivo. The 4ā€²-thio RNA analog exhibits significantly enhanced RNA affinity compared with RNA, and shows potential for incorporation into siRNAs. 2-Thiouridine (s(2)U) and 5-methyl-2-thiouridine (m(5)s(2)U) are natural nucleotide analogs. s(2)U in tRNA confers greater specificity of codonā€“anticodon interactions by discriminating more strongly between A and G compared with U. 2-Thio modification preorganizes the ribose and 2ā€²-deoxyribose sugars for a C3ā€²-endo conformation, and stabilizes heteroduplexes composed of modified DNA and complementary RNA. Combination of the 2-thio and sugar 2ā€²-O-modifications has been demonstrated to boost both thermodynamic stability and nuclease resistance. Using the 2ā€²-O-[2-(methoxy)ethyl]-2-thiothymidine (m(5)s(2)Umoe) analog, we have investigated the consequences of the replacement of the 2-oxygen by sulfur for base-pair geometry and duplex conformation. The crystal structure of the A-form DNA duplex with sequence GCGTAT*ACGC (T* = m(5)s(2)Umoe) was determined at high resolution and compared with the structure of the corresponding duplex with T* = m(5)Umoe. Notable changes as a result of the incorporation of sulfur concern the base-pair parameter ā€˜openingā€™, an improvement of stacking in the vicinity of modified nucleotides as measured by base overlap, and a van der Waals interaction between sulfur atoms from adjacent m(5)s(2)Umoe residues in the minor groove. The structural data indicate only minor adjustments in the water structure as a result of the presence of sulfur. The observed small structural perturbations combined with the favorable consequences for pairing stability and nuclease resistance (when combined with 2ā€²-O-modification) render 2-thiouracil-modified RNA a promising candidate for applications in RNAi

    Unexpected origins of the enhanced pairing affinity of 2 \u27-fluoro-modified RNA

    Get PDF
    Various chemical modifications are currently being evaluated for improving the efficacy of short interfering RNA (siRNA) duplexes as antisense agents for gene silencing in vivo. Among the 2\u27-ribose modifications assessed to date, 2\u27deoxy-2\u27-fluoro-RNA (2\u27-F-RNA) has unique properties for RNA interference (RNAi) applications. Thus, 2\u27-F-modified nucleotides are well tolerated in the guide (antisense) and passenger (sense) siRNA strands and the corresponding duplexes lack immunostimulatory effects, enhance nuclease resistance and display improved efficacy in vitro and in vivo compared with unmodified siRNAs. To identify potential origins of the distinct behaviors of RNA and 2\u27-F-RNA we carried out thermodynamic and X-ray crystallographic analyses of fully and partially 2\u27-F-modified RNAs. Surprisingly, we found that the increased pairing affinity of 2\u27-F-RNA relative to RNA is not, as commonly assumed, the result of a favorable entropic contribution (\u27conformational preorganization\u27), but instead primarily based on enthalpy. Crystal structures at high resolution and osmotic stress demonstrate that the 2\u27-F-RNA duplex is less hydrated than the RNA duplex. The enthalpy-driven, higher stability of the former hints at the possibility that the 2\u27-substituent, in addition to its important function in sculpting RNA conformation, plays an underappreciated role in modulating Watson-Crick base pairing strength and potentially pi-pi stacking interactions

    Properties of Parallel Tetramolecular G-Quadruplex Carrying N-Acetylgalactosamine as Potential Enhancer for Oligonucleotide Delivery to Hepatocytes

    Full text link
    The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3ā€²-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3ā€²-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalizatio

    Formulation of Small Activating RNA Into Lipidoid Nanoparticles Inhibits Xenograft Prostate Tumor Growth by Inducing p21 Expression

    Get PDF
    Application of RNA interference (RNAi) in the clinic has improved with the development of novel delivery reagents (e.g., lipidoids). Although RNAi promises a therapeutic approach at silencing gene expression, practical methods for enhancing gene production still remain a challenge. Previously, we reported that double-stranded RNA (dsRNA) can activate gene expression by targeting promoter sequence in a phenomenon termed RNA activation (RNAa). In the present study, we investigate the therapeutic potential of RNAa in prostate cancer xenografts by using lipidoid-based formulation to facilitate in vivo delivery. We identify a strong activator of gene expression by screening several dsRNAs targeting the promoter of tumor suppressor p21WAF1/ā€ŠCip1 (p21). Chemical modification is subsequently implemented to improve the medicinal properties of the candidate duplex. Lipidoid-encapsulated nanoparticle (LNP) formulation is validated as a delivery vehicle to mediate p21 induction and inhibit growth of prostate tumor xenografts grown in nude mice following intratumoral injection. We provide insight into the stepwise creation and analysis of a putative RNAa-based therapeutic with antitumor activity. Our results provide proof-of-principle that RNAa in conjunction with lipidioids may represent a novel approach for stimulating gene expression in vivo to treat disease

    Multivalent Cyclic RGD Conjugates for Targeted Delivery of Small Interfering RNA

    Get PDF
    We have designed, synthesized and tested conjugates of chemically modified luciferase siRNA (Luc-siRNA) with bi-, tri- and tetravalent cyclic(arginine-glycine-aspartic) peptides (cRGD) that selectively bind to the Ī±vĪ²3 integrin. The cellular uptake, subcellular distribution and pharmacological effects of the cRGD conjugated Luc-siRNAs as compared to un-conjugated controls were examined using a luciferase reporter cassette stably transfected into Ī±vĪ²3 positive M21+ human melanoma cells. The M21+ cells exhibited receptor-mediated uptake of cRGD-siRNA conjugates but not of unconjugated control siRNA. The fluorophore-tagged cRGD-siRNA conjugates were taken up by a caveolar endocytotic route and primarily accumulated in cytosolic vesicles. The bi-, tri- and tetravalent cRGD conjugates were taken up by M21+ cells to approximately the same degree. However, there were notable differences in their pharmacological effectiveness. The tri- and tetravalent versions produced progressive, dose-dependent reductions in luciferase expression, while the bivalent version had little effect. The basis for this divergence of uptake and effect is currently unclear. Nonetheless the high selectivity and substantial ā€˜knock downā€™ effects of the multivalent cRGD-siRNA conjugates suggest that this targeting and delivery strategy deserves further exploration

    Specificity, duplex degradation and subcellular localization of antagomirs

    Get PDF
    MicroRNAs (miRNAs) are an abundant class of 20ā€“23-nt long regulators of gene expression. The study of miRNA function in mice and potential therapeutic approaches largely depend on modified oligonucleotides. We recently demonstrated silencing miRNA function in mice using chemically modified and cholesterol-conjugated RNAs termed ā€˜antagomirsā€™. Here, we further characterize the properties and function of antagomirs in mice. We demonstrate that antagomirs harbor optimized phosphorothioate modifications, require >19-nt length for highest efficiency and can discriminate between single nucleotide mismatches of the targeted miRNA. Degradation of different chemically protected miRNA/antagomir duplexes in mouse livers and localization of antagomirs in a cytosolic compartment that is distinct from processing (P)-bodies indicates a degradation mechanism independent of the RNA interference (RNAi) pathway. Finally, we show that antagomirs, although incapable of silencing miRNAs in the central nervous system (CNS) when injected systemically, efficiently target miRNAs when injected locally into the mouse cortex. Our data further validate the effectiveness of antagomirs in vivo and should facilitate future studies to silence miRNAs for functional analysis and in clinically relevant settings

    Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors

    Get PDF
    K-RAS is a highly relevant oncogene that is mutated in approximately 90% of pancreatic cancers and 20ā€“25% of lung adenocarcinomas. The aim of this work was to develop a new anti-KRAS siRNA therapeutic strategy through the engineering of functionalized lipid nanoparticles (LNPs). To do this, first, a potent pan anti-KRAS siRNA sequence was chosen from the literature and different chemical modifications of siRNA were tested for their transfection efficacy (KRAS knockdown) and anti-proliferative effects on various cancer cell lines. Second, a selected siRNA candidate was loaded into tLyp-1 targeted and non-targeted lipid nanoparticles (LNPs). The biodistribution and antitumoral efficacy of selected siRNA-loaded LNP-prototypes were evaluated in vivo using a pancreatic cancer murine model (subcutaneous xenograft CFPAC-1 tumors). Our results show that tLyp-1-tagged targeted LNPs have an enhanced accumulation in the tumor compared to non-targeted LNPs. Moreover, a significant reduction in the pancreatic tumor growth was observed when the anti-KRAS siRNA treatment was combined with a classical chemotherapeutic agent, gemcitabine. In conclusion, our work demonstrates the benefits of using a targeting approach to improve tumor accumulation of siRNA-LNPs and its positive impact on tumor reductionThis work was supported by the 2-INTRATARGET project (PCIN-2017-129/AEI) funded by MINECO-PCIN-2017-129/AEI, under the frame of EuroNanoMed III; by ConsellerĆ­a de EducaciĆ³n e OrdenaciĆ³n Universitaria, Xunta de Galicia's Grupos de referencia competitiva (grant number ED431C 2017/09). The authors thank TƜBÄ°TAK (The Scientific and Technical Research Council of Turkey) for supporting this project (Project number : 217S068). S.A acknowledges the financial support for his postdoctoral research by the 2-INTRATARGET project (PCIN-2017-129/AEI) funded by MINECO-PCIN-2017-129/AEI, under the frame of EuroNanoMed IIIS

    Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters

    Get PDF
    Antigene RNAs (agRNAs) are small RNA duplexes that target non-coding transcripts rather than mRNA and specifically suppress or activate gene expression in a sequence-dependent manner. For many applications in vivo, it is likely that agRNAs will require chemical modification. We have synthesized agRNAs that contain different classes of chemical modification and have tested their ability to modulate expression of the human progesterone receptor gene. We find that both silencing and activating agRNAs can retain activity after modification. Both guide and passenger strands can be modified and functional agRNAs can contain 2ā€²F-RNA, 2ā€²OMe-RNA, and locked nucleic acid substitutions, or combinations of multiple modifications. The mechanism of agRNA activity appears to be maintained after chemical modification: both native and modified agRNAs modulate recruitment of RNA polymerase II, have the same effect on promoter-derived antisense transcripts, and must be double-stranded. These data demonstrate that agRNA activity is compatible with a wide range of chemical modifications and may facilitate in vivo applications

    Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme

    Get PDF
    Short interfering RNA (siRNA) duplexes are currently being evaluated as antisense agents for gene silencing. Chemical modification of siRNAs is widely expected to be required for therapeutic applications in order to improve delivery, biostability and pharmacokinetic properties. Beyond potential improvements in the efficacy of oligoribonucleotides, chemical modification may also provide insight into the mechanism of mRNA downregulation mediated by the RNAā€“protein effector complexes (RNA-induced silencing complex or RISC). We have studied the in vitro activity in HeLa cells of siRNA duplexes against firefly luciferase with substitutions in the guide strand of U for the apolar ribo-2,4-difluorotoluyl nucleotide (rF) [Xia, J. et al. (2006) ACS Chem. Biol., 1, 176ā€“183] as well as of C for rF. Whereas an internal rF:A pair adjacent to the Ago2 (ā€˜slicerā€™ enzyme) cleavage site did not affect silencing relative to the native siRNA duplex, the rF:G pair and other mismatches such as A:G or A:A were not tolerated. The crystal structure at atomic resolution determined for an RNA dodecamer duplex with rF opposite G manifests only minor deviations between the geometries of rF:G and the native U:G wobble pair. This is in contrast to the previously found, significant deviations between the geometries of rF:A and U:A pairs. Comparison between the structures of the RNA duplex containing rF:G and a new structure of an RNA with A:G mismatches with the structures of standard Watsonā€“Crick pairs in canonical duplex RNA leads to the conclusion that local widening of the duplex formed by the siRNA guide strand and the targeted region of mRNA is the most likely reason for the intolerance of human Ago2 (hAgo2), the RISC endonuclease, toward internal mismatch pairs involving native or chemically modified RNA. Contrary to the influence of shape, the thermodynamic stabilities of siRNA duplexes with single rF:A, A:A, G:A or C:A (instead of U:A) or rF:G pairs (instead of C:G) show no obvious correlation with their activities. However, incorporation of three rF:A pairs into an siRNA duplex leads to loss of activity. Our structural and stability data also shed light on the role of organic fluorine as a hydrogen bond acceptor. Accordingly, UV melting (TM) data, osmotic stress measurements, X-ray crystallography at atomic resolution and the results of semi-empirical calculations are all consistent with the existence of weak hydrogen bonds between fluorine and the H-N1(G) amino group in rF:G pairs of the investigated RNA dodecamers
    • ā€¦
    corecore