59 research outputs found

    Late Holocene wetland transgression and 500 years of vegetation and fire variability in the semi-arid Amboseli landscape, southern Kenya

    Get PDF
    The semi-arid Amboseli landscape, southern Kenya, is characterised by intermittent groundwater-fed wetlands that form sedimentary geoarchives recording past ecosystem changes. We present a 5000-year environmental history of a radiocarbon dated sediment core from Esambu Swamp adjacent to Amboseli National Park. Although radiocarbon dates suggest an unconformity or sedimentary gap that spans between 3800 and 500 cal year BP, the record provides a unique insight into the long-term ecosystem history and wetland processes, particularly the past 500 years. Climatic shifts, fire activity and recent anthropogenic activity drive changes in ecosystem composition. Prior to 3800 cal year BP the pollen data suggest semi-arid savanna ecosystem persisted near the wetland. The wetland transgressed at some time between 3800 and 500 cal year BP and it is difficult to constrain this timing further, and palustrine peaty sediments have accumulated since 400 cal year BP. Increased abundance of Afromontane forest taxa from adjacent highlands of Kilimanjaro and the Chyulu Hills and local arboreal taxa reflect changes in regional moisture budgets. Particularly transformative changes occurred in the last five centuries, associated with increased local biomass burning coeval with the arrival of Maa-speaking pastoralists and intensification of the ivory trade. Cereal crops occurred consistently from around 300 cal year BP, indicative of further anthropogenic activity. The study provides unique insight in Amboseli ecosystem history and the link between ecosystem drivers of change. Such long-term perspectives are crucial for future climate change and associated livelihood impacts, so that suitable responses to ensure sustainable management practices can be developed in an important conservation landscape

    Integrating stakeholders' perspectives and spatial modelling to develop scenarios of future land use and land cover change in northern Tanzania.

    Get PDF
    Rapid rates of land use and land cover change (LULCC) in eastern Africa and limited instances of genuinely equal partnerships involving scientists, communities and decision makers challenge the development of robust pathways toward future environmental and socioeconomic sustainability. We use a participatory modelling tool, Kesho, to assess the biophysical, socioeconomic, cultural and governance factors that influenced past (1959-1999) and present (2000-2018) LULCC in northern Tanzania and to simulate four scenarios of land cover change to the year 2030. Simulations of the scenarios used spatial modelling to integrate stakeholders' perceptions of future environmental change with social and environmental data on recent trends in LULCC. From stakeholders' perspectives, between 1959 and 2018, LULCC was influenced by climate variability, availability of natural resources, agriculture expansion, urbanization, tourism growth and legislation governing land access and natural resource management. Among other socio-environmental-political LULCC drivers, the stakeholders envisioned that from 2018 to 2030 LULCC will largely be influenced by land health, natural and economic capital, and political will in implementing land use plans and policies. The projected scenarios suggest that by 2030 agricultural land will have expanded by 8-20% under different scenarios and herbaceous vegetation and forest land cover will be reduced by 2.5-5% and 10-19% respectively. Stakeholder discussions further identified desirable futures in 2030 as those with improved infrastructure, restored degraded landscapes, effective wildlife conservation, and better farming techniques. The undesirable futures in 2030 were those characterized by land degradation, poverty, and cultural loss. Insights from our work identify the implications of future LULCC scenarios on wildlife and cultural conservation and in meeting the Sustainable Development Goals (SDGs) and targets by 2030. The Kesho approach capitalizes on knowledge exchanges among diverse stakeholders, and in the process promotes social learning, provides a sense of ownership of outputs generated, democratizes scientific understanding, and improves the quality and relevance of the outputs

    A 3000-year record of vegetation changes and fire at a high-elevation wetland on Kilimanjaro, Tanzania

    Get PDF
    Kilimanjaro is experiencing the consequences of climate change and multiple land-use pressures. Few paleoenvironmental and archeological records exist to examine historical patterns of late Holocene ecosystem changes on Kilimanjaro. Here we present pollen, phytolith, and charcoal (>125 ÎŒm) data from a palustrine sediment core that provide a 3000-year radiocarbon-dated record collected from a wetland near the headwaters of the Maua watershed in the alpine and ericaceous vegetation zones. From 3000 to 800 cal yr BP, the pollen, phytolith, and charcoal records show subtle variability in ericaceous and montane forest assemblages with apparent multicentennial secular variability and a long-term pattern of increasing Poaceae and charcoal. From 800 to 600 cal yr BP, montane forest taxa varied rapidly, Cyperaceae abundances increased, and charcoal remained distinctly low. From 600 yr cal BP to the present, woody taxa decreased, and ericaceous taxa and Poaceae dominated, with a conspicuously increased charcoal influx. Uphill wetland ecosystems are crucial for ecological and socioeconomic resilience on and surrounding the mountain. The results were synthesized with the existing paleoenvironmental and archaeological data to explore the high spatiotemporal complexity of Kilimanjaro and to understand historical human-environment interactions. These paleoenvironmental records create a long-term context for current climate, biodiversity, and land-use changes on and around Kilimanjaro

    A palaeovegetation and diatom record of tropical montane forest fire, vegetation and hydroseral changes on Mount Kenya from 27,000–16,500 cal yr BP

    Get PDF
    Fire is an important ecological disturbance in moist tropical forests influencing vegetation composition and structure. Contemporary and historical records of forest fires in mountain forests of Kenya are limited to the past decades and have a strong anthropogenic influence for ignition patterns and fire suppression activities. Palaeoenvironmental geoarchives provide the temporal depth to investigate long-term (multidecadal-to-millennial) changes in fire activity. Here we use a sediment record from the Rumuiku wetland, located in a volcanic crater on the eastern flank of Mount Kenya that was radiocarbon dated and analysed for diatom, pollen and charcoal subfossils to produce a highly resolved time series of local hydroclimatic change, vegetation, and fire; respectively. This study focuses on the time during and following the global Last Glacial Maximum, a time of rapid warming and changing regional hydroclimate with relatively stable atmospheric CO2 and not yet intensive anthropogenic modification of ecosystems. Charcoal and pollen data support associated changes in vegetation-fire centred around 21,500 cal yr BP when Afromontane forests with predominant abundances of Juniperus, Podocarpus and other montane forest trees changed to Hagenia-dominated forests that are relatively more open and adapted to burn more frequently but with less intense fires. These transitions in ecosystem composition, distribution and structure support the important role of fire in driving and maintaining forest composition in the watershed and contributing to the spatial complexity of forests around the mountain. These changes in composition, structure and biomass occurred during a time of rapid Late Pleistocene climate warming, regional hydroclimatic drying, and slowly rising atmospheric CO2 from 27,000 to 16,500 cal yr BP, during and following the conditions of the global Last Glacial Maximum. Temperature, hydroclimate and atmospheric CO2 are well-known drivers of montane vegetation change in the tropics and the role of fire is shown here to be a contributing driver to the spatial heterogeneity of forest patches at long time scales. Vegetation modelling at spatial scales relevant to land management and conservation should include retrospective evidence of the range of drivers of ecological disturbance regimes

    Serengeti's futures: Exploring land use and land cover change scenarios to craft pathways for meeting conservation and development goals

    Get PDF
    Rapid land use transformations and increased climatic uncertainties challenge potential sustainable development pathways for communities and wildlife in regions with strong economic reliance on natural resources. In response to the complex causes and consequences of land use change, participatory scenario development approaches have emerged as key tools for analyzing drivers of change to help chart the future of socio-ecological systems. We assess stakeholder perspectives of land use and land cover change (LULCC) and integrate co-produced scenarios of future land cover change with spatial modeling to evaluate how future LULCC in the wider Serengeti ecosystem might align or diverge with the United Nations' Sustainable Development Goals and the African Union's Agenda 2063. Across the wider Serengeti ecosystem, population growth, infrastructural development, agricultural economy, and political will in support of climate change management strategies were perceived to be the key drivers of future LULCC. Under eight scenarios, declines in forest area as a proportion of total land area ranged from 0.1% to 4% in 2030 and from 0.1% to 6% in 2063, with the preservation of forest cover linked to the level of protection provided. Futures with well-demarcated protected areas, sound land use plans, and stable governance were highly desired. In contrast, futures with severe climate change impacts and encroached and degazetted protected areas were considered undesirable. Insights gained from our study are important for guiding pathways toward achieving sustainability goals while recognizing societies' relationship with nature. The results highlight the usefulness of multi-stakeholder engagement, perspective sharing, and consensus building toward shared socio-ecological goals

    Guidelines for Reporting and Archiving 210Pb Sediment Chronologies to Improve Fidelity and Extend Data Lifecycle

    Get PDF
    Radiometric dating methods are essential for developing geochronologies to study Late Quaternary environmental change and 210Pb dating is commonly used to produce age-depth models from recent (within 150 years) sediments and other geoarchives. The past two centuries are marked by rapid environmental socio-ecological changes frequently attributed to anthropogenic land-use activities, modified biogeochemical cycles, and climate change. Consequently, historical reconstructions over this recent time interval have high societal value because analyses of these datasets provide understanding of the consequences of environmental modifications, critical ecosystem thresholds, and to define desirable ranges of variation for management, restoration, and conservation. For this information to be used more broadly, for example to support land management decisions or to contribute data to regional analyses of ecosystem change, authors must report all of the useful age-depth model information. However, at present there are no guidelines for researchers on what information should be reported to ensure 210Pb data are fully disclosed, reproducible, and reusable; leading to a plethora of reporting styles, including inadequate reporting that reduces potential reusability and shortening the data lifecycle. For example, 64% of the publications in a literature review of 210Pb dated geoarchives did not include any presentation of age uncertainty estimates in modeled calendar ages used in age-depth models. Insufficient reporting of methods and results used in 210Pb dating geoarchives severely hampers reproducibility and data reusability, especially in analyses that make use of databased palaeoenvironmental data. Reproducibility of data is fundamental to further analyses of the number of palaeoenvironmental data and the spatial coverage of published geoarchives sites. We suggest, and justify, a set of minimum reporting guidelines for metadata and data reporting for 210Pb dates, including an IEDA (Interdisciplinary Earth Data Alliance), LiPD (Linked Paleo Data) and generic format data presentation templates, to contribute to improvements in data archiving standards and to facilitate the data requirements of researchers analyzing datasets of several palaeoenvironmental study sites. We analyse practices of methods, results and first order interpretation of 210Pb data and make recommendations to authors on effective data reporting and archiving to maximize the value of datasets. We provide empirical evidence from publications and practitioners to support our suggested reporting guidelines. These guidelines increase the scientific value of 210Pb by expanding its relevance in the data lifecycle. Improving quality and fidelity of environmental datasets broadens interdisciplinary use, lengthens the potential lifecycle of data products, and achieves requirements applicable for evidenced-based policy support

    Anthropogenic modifications to fire regimes in the wider Serengeti‐Mara ecosystem

    Get PDF
    Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems

    Anthropogenic modifications to fire regimes in the wider Serengeti-Mara ecosystem

    Get PDF
    Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.Natural Environment Research Council, Grant/Award Number: JZG10015; Leverhulme Trust, Grant/Award Number: IN‐2014‐022; VetenskapsrĂ„det; Sida and Formas, Grant/Award Number: 2016‐06355.http://wileyonlinelibrary.com/journal/gcbhj2019Zoology and Entomolog

    The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73–15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL), 40Ar∕39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867
    • 

    corecore