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Abstract
Fire is a key driver in savannah systems and widely used as a land management tool. 
Intensifying human land uses are leading to rapid changes in the fire regimes, with 
consequences for ecosystem functioning and composition. We undertake a novel 
analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosys‐
tem, document multidecadal temporal changes and investigate the factors under‐
lying these patterns. We used MODIS active fire and burned area products from 
2001 to 2014 to identify individual fires; summarizing four characteristics for each 
detected fire: size, ignition date, time since last fire and radiative power. Using satel‐
lite imagery, we estimated the rate of change in the density of livestock bomas as a 
proxy for livestock density. We used these metrics to model drivers of variation in the 
four fire characteristics, as well as total number of fires and total area burned. Fires 
in the Serengeti‐Mara show high spatial variability—with number of fires and ignition 
date mirroring mean annual precipitation. The short‐term effect of rainfall decreases 
fire size and intensity but cumulative rainfall over several years leads to increased 
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1  | INTRODUC TION

Fire has been a natural ecological process for hundreds of millions 
of years (Bond, 2005; Bowman et al., 2009), interacts with human 
activities (Archibald, Staver, & Levin, 2012) and is a key ecological 
and evolutionary driver (Bond & Keeley, 2005). Fire influences the 
distribution of biomes (Bond, Woodward, & Midgley, 2005), car‐
bon sequestration (Williams, Hutley, Cook, Russell‐Smith, & Chen, 
2004), nutrient exchange (Frost & Robertson, 1987) and vegetation 
structure (Govender, Trollope, & Wilgen, 2006). Burning is formally 
and informally used as a management tool in many flammable eco‐
systems, both inside and outside protected areas (Parr, Robertson, 
Biggs, & Chown, 2004). Understanding the spatio‐temporal patterns 
exhibited by fire, the factors driving fire occurrence, and the extent to 
which fire characteristics can be manipulated is essential for the suc‐
cessful management of fire‐prone ecosystems, particularly given in‐
creasing human pressures and climate change (Bowman et al., 2009).

Savannah ecosystems cover approximately half of the African 
continent (Parr, Lehmann, Bond, Hoffmann, & Andersen, 2014). Fire 
is one of the most common (in some cases only) management tools 
used in African savannahs (Beale et al., 2018). Despite this, there is 
widespread debate concerning fire management, with approaches 
ranging from complete fire suppression (e.g. by the Kenya Wildife 
Service), burning to control woody encroachment (e.g. Gabon), and 
‘burning for biodiversity’ (e.g. South Africa), where fire‐driven patch‐
iness is used as a tool for maximizing biodiversity (Beale et al., 2018; 
Parr & Brockett, 1999). The overall effects of fire management at 
regional scales remain unknown. For example, one study of a 45 year 
interval in Kruger National Park, South Africa found that variation 
in the area burnt was dependent on rainfall and not management 
objectives, even though managers were able to influence the sea‐
sonality of fire (Smit, Smit, Govender, Linde, & MacFadyen, 2013; 
van Wilgen, Govender, Biggs, Ntsala, & Funda, 2004). The context‐
dependent nature of fire, however, means that this finding may not 
be globally applicable. Many studies focus on a single variable to de‐
scribe a fire regime, span a limited temporal range or do not include 
changes at regional scales and among several management (although 

see Buthelezi, Mutanga, Rouget, & Sibanda, 2016; Tarimo, Dick, 
Gobakken, & Totland, 2015). There is, therefore, a need for stud‐
ies that document fire regimes and their drivers more widely and in 
specific regions of high socio‐economic importance (Archibald, Roy, 
Wilgen, & Scholes, 2009; Beale et al., 2018; van Wilgen et al., 2004).

Examining the multidimensionality of fire is crucial in under‐
standing fire as a component of the ecology of an ecosystem. For ex‐
ample, individual fires can be characterized by their size, seasonality, 
return interval and intensity (Gill, 1975). The long‐term patterns in 
these characteristics describe the fire regime (Bond & Keeley, 2005; 
Hempson et al., 2018). Fire regimes vary by both broad‐ and fine‐
scale environmental factors, including climate (Balfour & Howison, 
2002), vegetation (Archibald et al., 2009), herbivory (Archibald, 
Nickless, Govender, Scholes, & Lehsten, 2010) and topography 
(Wood, Murphy, & Bowman, 2011). At large spatial scales fire re‐
gimes are driven by environmental factors, but at finer scales human 
activities also influence burning (Archibald, Lehmann, Gomez‐Dans, 
& Bradstock, 2013; Archibald, Nickless, et al., 2010; Archibald, 
Scholes, Roy, Roberts, & Boschetti, 2010; Smit et al., 2013). Humans 
increase the number of ignitions, and broaden the times of year when 
ignitions happen, but also inhibit fire spread by fragmenting land‐
scapes and reducing fuel load through livestock grazing (Archibald, 
2013; Archibald, Scholes, et al., 2010; Frost, 1999; Guyette, Muzika, 
& Dey, 2002). Diverse socio‐economic, cultural, political and envi‐
ronmental conditions result in great variability in the motives behind 
anthropogenic burning, in the practice of how burns are applied, and 
on the consequences for fire regimes (Bowman et al., 2011; Laris, 
2002; Le Page, Oom, Silva, Jönsson, & Pereira, 2010). Determining 
how people influence fire regimes is especially important given 
increasing human population pressures and associated land‐use 
changes in savannahs (Archibald, Scholes, et al., 2010).

Covering nearly 33,000  km2, the Serengeti‐Mara ecosystem of 
southern Kenya and northern Tanzania is one of the largest trans‐
boundary protected areas in the world. This savannah system burns 
frequently and the importance of fire for the ecology of the ecosystem 
is well documented (e.g. Dublin, 1995; Holdo, Holt, & Fryxell, 2009). 
The ecosystem is characterized by contrasting spatial gradients in 

standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our 
study reveals dramatic changes over time, with a reduction in total number of fires 
and total area burned, to the point where some areas now experience virtually no fire. 
We suggest that increasing livestock numbers are driving this decline, presumably by 
inhibiting fire spread. These temporal patterns are part of a global decline in total area 
burned, especially in savannahs, and we caution that ecosystem functioning may have 
been compromised. Land managers and policy formulators need to factor in rapid fire 
regime modifications to achieve management objectives and maintain the ecological 
function of savannah ecosystems.
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rainfall and soil nutrients and comprises multiple management units 
with different fire management approaches. Consequently, there 
is great spatial variability in the drivers of fire across the ecosystem. 
Substantial historical changes to the fire regime of the Serengeti‐Mara 
have been attributed to the recovery of the wildebeest (Connochaetes 
taurinus Burchell, 1823) population from rinderpest (Sinclair et al., 
2007). During the mid‐19th century, the rapidly increasing wilde‐
beest population consumed large quantities of grass biomass, lead‐
ing to reductions in the total area burned each year, enhancing tree 
recruitment and increasing woody cover (Dublin, 1995). Whilst the 
wildebeest population stabilized at 1.3 million animals during the past 
decades (Hopcraft et al., 2015), burgeoning human populations sur‐
rounding the ecosystem’s protected areas continue to alter land‐use 
patterns (Estes, Kuemmerle, Kushnir, Radeloff, & Shugart, 2012), rain‐
fall has increased across the broader region (Ogutu, Bhola, Piepho, & 
Reid, 2006), and there have been changes in the management of some 
protected areas (Sinclair et al., 2007). It is, therefore, likely that there 
have been recent changes in the Serengeti‐Mara’s fire regime, the 
scale and causes of which are as yet undocumented.

We use satellite Earth Observation products to describe the fire 
regime across the broader Serengeti‐Mara ecosystem and investigate 
its spatio‐temporal drivers (see Dempewolf, Trigg, DeFries, & Eby, 
2007). We examine how six characteristics of the Serengeti‐Mara’s fire 
regime (fire size, ignition date, time since last fire, radiative power, total 
number of fires and total area burned) vary through space and time, 
both across the ecosystem and within its component management 
units, and investigate the drivers of these spatio‐temporal patterns. 
Specifically, our objectives are to: (a) characterize spatiotemporal vari‐
ation in fire regimes across the wider Serengeti‐Mara ecosystem over 
a 14 year period (2001–2014), and (b) determine the biotic and abiotic 
factors driving these patterns. We predicted that the combination of 
strong environmental gradients and differences in management ap‐
proaches will produce high variability in the observed patterns of fire 
across Serengeti‐Mara. We anticipated that rainfall would be the pri‐
mary driver of these patterns and that human activities, particularly 
reductions in fuel loads by livestock grazing, would have a detectable 
influence on certain aspects of the fire regime.

2  | METHODS

2.1 | Study area

We defined our study area (Figure 1) as the protected areas of the 
Serengeti‐Mara ecosystem and included a 5  km buffer around the 
Maasai Mara National Reserve, Serengeti National Park (SNP), Grumeti 
Game Reserve, Maswa Game Reserve and Mwiba Wildlife Reserve to 
allow us to compare protected areas to the de facto land management 
that takes place in the absence of formalised management institutions 
and agency. The buffer zone did not extend around Loliondo Game 
Controlled Area and Ngorongoro Conservation Area, as these pro‐
tected areas contain significant settlements within their boundaries. 
The resulting region covers 36,305 km2, of which 91.5% (33,232 km2) 
is encompassed by protected areas. For the purposes of this analysis, 

each of the seven protected areas and the 5  km wide buffer zone 
were counted as a discrete management unit. Grumeti and Ikorongo 
Game Reserves were combined (hereafter ‘Grumeti Game Reserve’), 
because both are managed by the same organization. Fire manage‐
ment approaches differ between protected areas: the Maasai Mara 
follows a policy of active fire suppression; managers in Grumeti, SNP 
and Maswa actively burn (for a variety of reasons and with varying 
levels of control); whilst managers in NCA and Loliondo adopt a more 
localized approach, with most fires being lit by communal farmers.

2.2 | Data sources

2.2.1 | Soil type

Soils are a proxy for nutrient availability and texture, playing an im‐
portant role in determining vegetation structure and species compo‐
sition, both of which affect fire (Anderson & Talbot, 1965). Soil data 
were downloaded from the FAO/UNESCO Digital Soil Map of the 
World (Fischer, Nachtergaele, Prieler, Velthuizen, & Verelst, 2008) and 
a soil type for each fire was extracted from the ‘dominant soil’ field.

2.2.2 | Elevation and slope

Topography either facilitates or hinders fire spread and affects char‐
acteristics such as radiative power (Pyne, Andrews, & Laven, 1996). 
We used the 30 m resolution NASA ASTER Global Digital Elevation 

F I G U R E  1   Map of the study area with the management units 
(shaded) labelled and inset a map of equatorial eastern Africa 
showing the location of the study area. Note the 5 km wide buffer 
except around Loliondo and Ngorongoro to the east. The base map 
is of elevation (made with Natural Earth)
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Map (Meyer, 2011) to extract elevation and slope values for each 
fire.

2.2.3 | Primary productivity

Fuel load is one key factor determining the characteristics of fire 
and is the medium through which drivers such as rainfall, soil type 
and herbivory influence fire. Net primary productivity (NPP) is a 
useful measure of the local rate of accumulation of grass biomass 
(Running et al., 2004). Raster layers of annual NPP were downloaded 
from the Land Processes Distributed Active Archive Centre using 
Echo Reverb in the form of MODIS 1  km NPP MOD173 and ras‐
ters of monthly gross primary productivity were downloaded from 
the Numerical Terradynamic Simulation Group at the University of 
Montana (MOD17 A2) (Running & Zhao, 2015).

2.2.4 | Grass structure

We collected data on grass height from 15 50  ×  50  m (0.25  ha) 
plots in Grumeti Game Reserve. We surveyed each plot six times 
between August 2016 and January 2017 and sampled grass height 
every 2  m along two 50  m line transects on each plot. For each 
point we computed the mean and rate of change in grass height. 
We aggregated to transect level using the median, and then used 
Google Earth Engine (Gorelick et al., 2017) to estimate grass height 
across the Serengeti‐Mara Ecosystem from Sentinel 1 Synthetic 
aperture radar data (Copernicus, 2018). We filtered Sentinel 1 data 
across Serengeti for ascending passes between 1 August 2016 
and 30 June 2017, resulting in a total of 93 images, computing the 
10th and 90th percentiles and the difference between them. We 
filtered locations where radar scatter in the lower percentile was 
over 23 to exclude bushes and trees. We fitted Classification and 
Regression Trees (with the Earth Engine CART algorithm) to predict 
grass height and grass growth rates across the Serengeti ecosystem 
using the computed 10th and 90th percentile of scatter, and differ‐
ence between them (Gorelick et al., 2017). Correlations between 
modelled and predicted height were both >0.9, sufficient for an 
analysis across the ecosystem: the working Earth Engine script is 
available here.

2.2.5 | Wildebeest distributions

Grazing by the approximately 1.3 million wildebeest in the Serengeti‐
Mara has a marked impact on grass structure, which in turn affects 
fire characteristics (Dublin, 1995; Holdo et al., 2009; Hopcraft  
et al., 2015). To include temporal distribution patterns of wildebeest, 
we aggregated a telemetry dataset of 54 GPS‐collared migratory 
wildebeest collected between 1999 and 2018 (see Hopcraft et al., 
2014). To generate monthly population‐level wildebeest utilization 
maps, we first fit Brownian bridge movement models (BBMM) to 
trajectory data to generate utilization distributions (UD’s) (Horne, 
Garton, Krone, & Lewis, 2007; Sawyer, Kauffman, Nielson, & 
Horne, 2009). BBMMs assume that movement trajectories are 

connected by Brownian motion between sequential, time‐specific 
GPS locations. Higher velocity movements result in more narrow 
distribution paths between points. Individual Brownian bridges for 
each individual were rasterized at a resolution of 500 m2 (median 
daily displacement of female wildebeest was 4.5  km) (Hopcraft 
et al., 2014). Because sample sizes varied across months in terms 
of number of data points and number of individuals, we reweighted 
raster data so that each month was represented equally. We did 
this in two steps: (a) dividing individual UD’s into monthly Voronoi 
fractures (subdivisions of a plane based on the distance between 
points), based on the individuals’ GPS trajectory, and (b) inversely 
weighting each fracture by the minimum monthly number of GPS 
locations for that month, so that months with many GPS locations 
(across all individuals) had less weight than months with few GPS 
points. Next, we combined (i.e. summed) all individual UD’s to gen‐
erate monthly population‐level UD’s and rescaled these surfaces 
so that total utilization summed to 1.0. Following estimation of 
population‐level UD’s, we excluded cells containing the lower 5% 
of utilization values to remove areas with low probability of use 
(Sawyer et al., 2009).

2.2.6 | Livestock density

It is illegal to graze livestock within Game Reserves and National 
Parks in Tanzania, but in practice this is difficult to enforce and en‐
croachment along borders persists. Reliable and extensive data on 
livestock distribution across our study area were not available and 
we, therefore, established the density of active bomas as a proxy 
for livestock density. Bomas are livestock enclosures, generally con‐
structed of thorny scrub. The ‘scar’ left by a boma persists for dec‐
ades after the boma has been abandoned (Veblen, 2013), for this 
reason we defined an active boma using two visual criteria: (a) a clear 
contrast between the colour of the substrate within the boma and 
the colour of the substrate surrounding it (livestock trampling dis‐
turbs substrate and changes its appearance), and (b) a continuous 
fenced perimeter delimiting the boma. Each boma may comprise mul‐
tiple internal ‘cells’, either to separate cattle (Bos Taurus Linnaeus, 
1758), goats (Capra aegagrus hircus Linnaeus, 1758) and sheep (Ovis 
aries Linnaeus, 1758), or to accommodate the livestock of an ex‐
tended group of people. Where this was the case, we counted the 
structure as a single boma rather than counting each cell individually 
(Figure 2). We used Google Earth (2017) to identify areas where two 
or more satellite images from different years overlapped. By visu‐
ally counting the number of active bomas in each satellite image in 
the area of overlap, we could estimate the change in boma density 
through time and predict boma density across our study area and 
study period.

We processed the raw boma count data to generate a raster of 
the rate of change in boma density. We fitted a generalized linear 
model (GLM) to the raw count data using individual areas of overlap 
as the unit of analysis to estimate the rate of change in boma den‐
sity over time. As we had an a priori assumption that management 
would affect the rate of change in boma density, we interpolated the 
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rate of change in boma density from within protected areas and from 
the buffer zone separately. We used regression kriging, a method of 
weighting values by distance, with management unit as an auxiliary 
variable, to predict the rate of change in boma density within pro‐
tected areas, and universal kriging to interpolate the rate of change 
in boma density within the buffer zone (Cressie, 1993). Our final 
products were a raster of the rate of change in boma density and 
a raster of the predicted boma density for each year of our study, 
both at 6 × 6 km resolution. We verified the results of our model by 
randomly selecting 25% (41) of the pixels for which our model had no 
observations, that is, pixels which were not covered by two or more 
overlapping satellite images. Where these pixels were covered by a 
single satellite image we counted the number of bomas within each 
pixel, if the pixel was not covered by a satellite image we randomly 
selected a different ‘no observation’ pixel. We then compared the 
boma density predicted by our model with the actual boma density 
in each ‘no observation’ pixel.

2.2.7 | Rainfall

We downloaded the 0.05° monthly rainfall product from the Climate 
Hazards Group InfraRed Precipitation with Station data (Funk et al., 
2015) for our study interval (January 2001–December 2014). The 
effect of rainfall on fire differs depending on the temporal scale 
considered. The immediate effect of rainfall increases atmospheric 
and vegetative moisture resulting in smaller and cooler fires, whilst 
the longer term effect of rainfall increases grass biomass (fuel) and 

thereby increases fire size and intensity. We extracted values for 
rainfall during the month of the fire (monthly rainfall) and accumu‐
lated rainfall from the two rainfall years prior to the date of the fire 
(cumulative rainfall) (van Wilgen et al., 2004). These were used as 
covariates in our spatial models. We also created rasters of annual 
rainfall and used a GLM to estimate the rate of change in annual 
rainfall in each pixel. These were used as covariates in our temporal 
model.

2.2.8 | Fire data

The MODIS (moderate resolution imaging spectroradiometer) 
Active Fire (MCD14ML) and Burned Area products (MCD45A1) 
were obtained from the Land Processes Distributed Active 
Archive Centre at 500 m resolution for the period January 2001–
December 2014. We combined the products to create a dataset 
of individual fires, their locations and associated fire character‐
istics. The dataset is described in detail in Hempson et al. (2018), 
but in summary: individual fires were identified using a flood‐fill 
algorithm (Archibald et al., 2009), with any spatially contiguous 
pixels that burned within 5 days of each other treated as a single 
fire. We calculated the centroid of each fire to represent it as a 
single spatial point, then we appended associated fire characteris‐
tics calculated from both MODIS products: fire size, ignition date 
(season), mean time since last fire (mean frequency) and radiative 
power (intensity).

Fire size was calculated as the number of pixels covered by a fire 
in the Burned Area Product. The date of ignition was calculated as 
the earliest date within a fire and was split into the calendar year 
(2001–2014), the ‘rainfall year’, and a value from 0 to 366 where 
0 = 1st January and 366 = 31st December. A rainfall year ran from 
October (the start of the short rainy season) to September and is 
more ecologically meaningful than a calendar year, as it contains a 
full seasonal cycle. The time since the last fire at a given location 
was calculated by taking the mean value for all the pixels that had 
burned before a given fire. Because a pixel had to burn twice before 
a ‘time since last fire’ value could be calculated, fires early in the 
dataset are more likely to lack a value for the time since last fire. 
This adds an element of temporal bias and an expectation that time 
since last fire increases as a function of time. Also, time since last fire 
is maximally constrained by the duration of our dataset. Finally, the 
maximum radiative power (MW/km2) for any pixel within a fire was 
taken as a measure of fire intensity. Not all fires had an associated 
fire radiative power value due to differences in the detection prob‐
abilities of active fires versus burn scars (Krawchuk & Moritz, 2014). 
Fire radiative power data are only available if a fire was burning at 
the time of the satellite overpass and burn scars are not always de‐
tected if they are small (<250 × 250 m) or underneath tree canopies. 
Small fires are least likely to have a value for fire radiative power, 
which biases our dataset towards larger and, therefore, potentially 
hotter fires. Although missing data in both fire radiative power and 
fire return interval characteristics add known biases, they do not add 
spatial bias, only noise.

F I G U R E  2   The differences between active bomas and scars 
(shown by arrows) in an area of low rainfall (top) and high rainfall 
(bottom). Note the multiple cells in bomas in the top image
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2.3 | Analysis

2.3.1 | Spatial drivers of fire

To examine the spatial drivers of fire we used a Bayesian condi‐
tional autoregressive modelling approach using an integrated nested 
Laplace approximation (INLA). This approach allows us to explic‐
itly account for spatial autocorrelation of predictor variables. INLA 
provides a computationally efficient framework for approximating 
posterior parameter estimates (Lindgren, Rue, & Lindström, 2011; 
Rue, Martino, & Chopin, 2009), while conditional autoregressive 
models have been found to perform well compared to spatial regres‐
sion models (Beale, Lennon, Yearsley, Brewer, & Elston, 2010). We 
fitted a stochastic partial differential equation model for each fire 
characteristic, explaining the characteristic as a function of rainfall 
and predicted boma density, wildebeest utilization, slope, eleva‐
tion, management unit, soil type, monthly GPP and annual NPP. To 
account for correlations between fire characteristics, we included 
them as covariates in our models. We split rainfall into two separate 
covariates: rainfall during the month of the fire (monthly rainfall) and 
cumulative rainfall from the beginning of the previous rainfall year to 
the date of the fire. We included all covariates as linear effects, ex‐
cept cumulative rainfall, which had both linear and quadratic terms, 
as it was unclear where the Serengeti‐Mara fell on the intermediate 
fire‐aridity curve (Pausas & Bradstock, 2007). To account for the ef‐
fect of grazing on grass structure in the months preceding a fire, we 
included wildebeest distribution as a cumulative total for the month 
of the fire and the 2 months prior to this. We centred and scaled 
covariates and used vague priors for all model parameters. We used 
95% credible intervals to assess support for the effect of each co‐
variate. All analyses were run in r version 3.2.3 (R Core Team, 2012) 
using the r‐inla package (Martins, Simpson, Lindgren, & Rue, 2013).

2.3.2 | Temporal drivers of fire

We assessed temporal trends in four individual fire characteristics 
(size, ignition date, time since last fire and radiative power), and two 
aggregate fire characteristics (total number of fires and total area 
burned). We used Pearson’s product‐moment correlations to assess 
annual trends across the whole ecosystem and conducted a spa‐
tially explicit analysis that calculated the rate of change in each fire 
characteristic across 6 × 6 km pixels (n = 1,152). To calculate rates 
of change we aggregated the characteristics for all the fires in each 
year into separate rasters and used GLMs to estimate the rate of 
change in each pixel over the period 2001–2014, and to predict a 
baseline area burnt for each pixel in 2001.

We fitted a GLM to predict the change in total area burned, using 
the rate of change in boma density, management unit, the mean and 
rate of change of annual rainfall and the baseline area burned in each 
pixel as predictors. Baseline area burned determines the capacity for 
the burned area of a pixel to change, whilst mean annual rainfall de‐
termines the resilience of a pixel to any changes in the mean annual 
rainfall or boma density. We anticipated that including interactions 

between these covariates would improve our model. From a full model 
containing all predictors we fitted a reduced model using single‐term 
deletions and log likelihood ratio tests. We performed a post hoc 
Tukey’s honestly significant difference test to compare levels within 
our management covariate, used diagnostic plots to assess whether 
the residuals met the assumptions of all GLMs and tested our Poisson 
GLM for overdispersion. A table of the error structures, link functions 
and data transformations used for all GLMs can be found in Table S1. 
Finally, we used Pearson’s product‐moment correlations to: (1) differ‐
entiate the influence of two significant covariates on the area burnt: 
(a) reducing the number of fires, or (b) reduction in fire size, and (2) to 
test our assumptions that higher predicted boma density decreased 
grass height but not grass growth rates.

3  | RESULTS

3.1 | Spatial patterns

We detected 13,635 fires across our study site between 2001 and 
2014. The median area burnt annually was 8,211.1 km2 (22.6% of 
the total study area) but differed considerably between protected 
areas and the buffer zone. In the buffer zone the median area burnt 
was 116  km2 (3.2%), but within protected areas it was 8,001  km2 
(24.1%). Most fires were small: 37.2% occupied only 0.25 km2 (a sin‐
gle 500 × 500 m pixel), 78.4% were less than 5 km2 (20 pixels), whilst 
the largest (in SNP) occupied 2,316  km2 (9,263 pixels) (Figure 3a). 
Fire occurrence throughout the year was bimodal, with fire seasons 
matching the two dry seasons (Figure 3b; Figure S1). Time since 
fire varied widely, with a maximum of 13.1  years and a minimum 
0.25 years. Over a quarter of the area, 10,383 km2 (28.6%) remained 
unburnt for the duration of the study, meaning the maximum time 
since last fire exceeds the 14  year duration of the study. Overall, 
21.7%, 57.6% and 70.8% of fires occurred within 1, 2 and 3 years of 
the preceding previous fire, respectively, although some areas burnt 
twice within a 3‐month interval (Figure 3c). Due to limitations in the 
MODIS active fire product (see Methods) 2,869 fires (21%) had an 
associated value for radiative power. Of these, 2,847 fires (99.2%) 
had a radiative power of less than 50 MW/km2 (Figure 3d), which 
is comparable to the intensities of fires across southern Africa re‐
ported by Archibald, Nickless, et al. (2010).

There was an east–west gradient in fire occurrence that correlated 
with the spatial pattern in mean annual rainfall (Figure 4a). The number 
of fires was particularly high in the west and north–west of SNP, with 
few fires occurring in the Maasai Mara, Loliondo Game Reserve and 
Ngorongoro Conservation Area, (although Ngorongoro Crater is visu‐
ally distinguishable) (Figure 4b). There was also an east–west pattern 
in the seasonality of fires, with fires across Mwiba, Maswa, SNP and 
Grumeti concentrated in the long dry season (June–August) and fires 
in the NCA, Loliondo and to some extent Maasai Mara occurring at the 
start of the short rains (September–December) (Figure 4d). Large fires 
(>50 km2) were most common in the Maasai Mara, but also occurred 
throughout the ecosystem (Figure 4c). Maasai Mara and NCA had lon‐
ger times since last fire than the other regions, although the short‐grass 
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plains are clearly distinct from the surrounding landscape (Figure 4e). 
Fires were most intense in the north–west (Figure 4f) where there was 
also higher variability in ignition date (Figure S2c). There were pro‐
nounced differences in the number of fires and area burned across 
management units. Whilst the total area burnt and total number of 
fires are a function of the area of each management unit, management 
units to the west (SNP, Grumeti, Maswa and Mwiba) had both a greater 
area burned and number of fires when expressed as a proportion of 
their land area (Figure S3).

3.2 | Temporal trends

The number of fires varied between 474 and 1,456 per year, and the 
area burned varied between 2,819 and 13,017 km2 (7.8%–35.9%) per 
year. The largest 10% of fires accounted for 61.8%–87.2% (median 
77.5%) of the area burnt each year. There was a strong positive cor‐
relation between the total number of fires and the total area burned 
each year (p < 0.001, r2 = 0.82, df = 12), no correlation between the 

median size of the largest 10% of fires and the area burned annually 
(p = 0.63, r2 = 0.02, df = 12) and no correlation between the median 
fire size of the largest 10% of fires and the total number of fires an‐
nually (p = 0.70, r2 = 0.01, df = 12).

There was a 40% decline in the number of fires annually 
(p = 0.03, r2 = 0.33, df = 12) (Figure 5a) between 2001 and 2014, 
with a 39% decrease in the area burnt annually (p = 0.07, r2 = 0.25, 
df  =  12) (Figure 5b). Median fire size of the largest 10% of fires 
(p = 0.58, r2 = 0.03, df = 12) (Figure 5c) and radiative power (p = 0.97, 
r2  =  0.0001, df  =  12) (Figure 5f) did not change over this period, 
but fires burned earlier in the year (p  =  0.004, r2  =  0.5, df  =  12) 
(Figure 5d). The increase in time since last fire (p = 0.009, r2 = 0.44, 
df = 12) (Figure 5e) is likely an artefact of our methods, as maximum 
time since last fire increases with study duration.

These observed temporal trends differed among management 
units. The overall decrease in the total area burned was driven by 
significant reductions in Loliondo, Maasai Mara and the buffer zone 
(Figure 6b), while the decline in number of fires occurred more widely 

F I G U R E  3   The distribution of fire traits: (a) fire size, (b) ignition date, (c) time since last fire and (d) fire radiative power
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F I G U R E  4   Spatial patterns in: (a) mean annual rainfall, (b) number of fires; note fires are much rarer in the Maasai Mara, (c) median fire 
size, (d) median ignition date, note the east–west pattern, (e) median time since last fire; note the short grass plain in south‐eastern SNP and 
the difference between Maasai Mara and northern SNP and (f) median fire radiative power
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with only SNP and Maswa showing no significant change. Whilst fire 
size did not decline across the ecosystem as a whole, there were 
significant declines in fire size in Ngorongoro and in the buffer zone. 
Time since last fire increased significantly in all management units 
except Maswa, and fire radiative power increased significantly in 
Mwiba (Figure S4).

3.3 | Spatial drivers of fire

Our models suggest that both monthly and cumulative rainfall 
drive fire in the Serengeti‐Mara. The results support a link be‐
tween higher monthly rainfall and smaller fires, monthly NPP 
(which is linked to monthly rainfall and fuel moisture) with smaller 
and cooler fires and also suggested higher monthly rainfall shifted 
fires later into the year (Figure 7; Figure S5). The effect of cumula‐
tive rainfall was non‐linear: both high and low cumulative rainfall 

result in fires occurring later in the year, but also in shorter times 
since last fire. Our models also suggested that fires were smaller 
in areas with high boma density (Figure 6d,e) and high wildebeest 
utilization (Figure 8), and detected known methodological issues 
with MODIS data, such as suggesting that larger fires had higher 
fire radiative power, and that time since last fire increased with 
year (Figure S5).

3.4 | Temporal drivers of fire

We identified 27,145  km2 (74.7% of our study area) where two 
or more satellite images from different years overlapped. Within 
these areas we recorded 55,940 bomas in satellite images dating 
from 2001 to 2017. The highest boma density for an area of over‐
lap in a single year was 56.4 bomas/km2, while large areas con‐
tained no bomas throughout the study period. The trends in boma 

F I G U R E  5   Fitted temporal trends in: (a) total number of fires, (b) total area burnt, (c) median fire size, (d) median ignition date, (e) median 
time since last fire, (f) median fire radiative power. Linear regression lines are shown in grey and the shaded envelopes represent 95% 
confidence intervals
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F I G U R E  6   (a) Rate of change in mean annual rainfall (mm/year) from 2001 to 2014, (b) rate of change in area burnt (km2/year), (c) rate of 
change in boma density (bomas km−2 year−1), (d) predicted boma density in 2001 and (e) predicted boma density in 2014. Note active removal 
of bomas from Mwiba (south‐eastern portion of the ecosystem) occurred from 2006
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F I G U R E  7   Relationships between monthly rainfall and (a) fire size and (b) fire radiative power, and between cumulative rainfall and (c) 
fire size, (d) ignition date, (e) time since last fire and (f) fire radiative power. Darker areas indicate the space where the highest density of fires 
occur
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density over time differed widely, with some pixels increasing at 
a rate of 1.53 bomas km−2 year−1 and others decreasing at a rate 
of 0.55 bomas km−2 year−1 (Figure 6c–e). Verification of the results 
of our model of boma density found a significant positive corre‐
lation between predicted and actual boma density (p = 0.00258, 
r2 = 0.22, df = 37), but the ratio of predicted to actual boma density 
was 5:1. A single outlier, which was split almost exactly equally 
between Maasai Mara and the buffer zone, was excluded from 
the analysis. We found a significant negative correlation between 
boma density and grass height (p = <0.0001, r2 = 0.01, df = 12,315) 
and a significant positive correlation between boma density and 
grass growth rates (p = <0.0001, r2 = 0.008, df = 12,315).

Our model estimated that an increase of 0.002 bomas  km−2 
year−1 was associated with a 9.6% decline in the area burned in 
each cell per year. We found that mean annual rainfall increased 
in 73% of pixels (Figure 6a) and had a positive effect on the area 
burnt. A post hoc Tukey’s test found no difference in the relation‐
ship between area burnt and boma density between Grumeti, SNP 
and Maswa, no difference between NCA, Loliondo and the buf‐
fer zone, no difference between Maasai Mara and the buffer zone 
and no difference between Mwiba and any other management 
area (Figure 9). The rate of change in area burnt in a pixel was 

strongly positively correlated with both the rate of change in size 
(p < 0.001, r2 = 0.66, df = 1,066) and the rate of change in number 
of fires (p  <  0.001, r2  =  0.42, df  =  1,066). The rate of change in 
boma density, rate of change in mean annual rainfall, management 
unit and the baseline area burnt were all significant predictors of 
the rate of change in the area burnt. There were significant inter‐
actions between the rate of change in boma density, mean annual 
rainfall and baseline area burnt, and between the rate of change in 
mean annual rainfall and mean annual rainfall (Table S2).

4  | DISCUSSION

We provide the first comprehensive spatial and temporal assess‐
ment of fire regimes across the wider Serengeti‐Mara ecosystem. 
Fire size, season, radiative power and frequency varied across the 
study area and were strongly linked to differences in rainfall and, 
to a lesser extent, grazing. Spatial patterns in fire characteristics 
were highly variable across the Serengeti‐Mara, reflecting the sys‐
tem’s strong environmental gradients (Dempewolf et al., 2007). The 
principal effect of the Serengeti‐Mara’s bimodal rainfall pattern gen‐
erates bimodal fire seasonality with fewer fires in wetter months. 

F I G U R E  8   Mean monthly percentage of wildebeest utilization per 500 m2
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F I G U R E  9   The proportion burnt per year (squares and dotted lines) and the predicted boma density per year (circles and solid lines) 
for: (a) Grumeti, (b) SNP, (c) Maswa, (d) Mwiba, (e) Loliondo, (f) Ngorongoro, (g) Maasai Mara and (h) the buffer zone. Note the contrasting 
patterns between (d) Mwiba (where boma density was decreasing and the area burnt increasing due changes in management), (e) Loliondo 
(where boma density was increasing and the area burnt is decreasing) and (b) SNP (where boma density and area burnt were stable)
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Higher monthly rainfall reduced both the size and radiative power of 
fires occurring in those months, presumably due to the dampening  
effect of green vegetation and atmospheric moisture on fire. Fires 
occurred later in areas of both high and low cumulative rainfall. 
Whilst this result may initially seem contradictory, we suggest that 
high rainfall areas remain wetter for longer periods, resulting in fires 
that occur later into the long dry season, whilst low rainfall areas 
remain dry for longer periods, resulting in fires occurring for longer 
at the end of the long dry season. Our findings concur with other 
African studies (e.g. Sinclair, 1975) that conclude that the influence 
of cumulative rainfall on grass growth rates is primarily responsible 
for fire size, intensity and return interval (although our study did not 
make explicit links between rainfall and primary productivity). In 
contrast, rainfall immediately preceding the date of a fire increases 
fuel and atmospheric moisture (through surface evaporation and 
transpiration), decreasing fire size and intensity, and resulting in 
fewer fires in wet periods (Govender et al., 2006; van Wilgen et al., 
2004).

Strikingly, we found that the total area burnt and number of 
fires declined over time, with some previously burned areas lack‐
ing any fire in recent years. This was principally associated with 
changes in human activities: an increase in livestock density, and 
variable management objectives and practices. We observed con‐
trasting spatial patterns in the temporal trends that might have 
been obscured by a larger scale analysis, emphasising that fire 
studies need to be spatially explicit at the relevant scale. While 
the positive response to cumulative rainfall was expected (e.g. 
Archibald et al., 2009), the effect of fire management found here 
differs from previous studies (e.g. van Wilgen et al., 2004). This 
raises concerns over the long‐term functioning of the Serengeti‐
Mara as a savannah system (Andela et al., 2017; Sinclair et al., 
2007) and potential for savannah management regimes to result 
in modified ecologies.

We proposed several possible drivers of the decreases in the total 
area burnt: changes in rainfall, changes in management regimes and 
increased wildebeest numbers. Rainfall increased across most of the 
ecosystem during our study period and this increase in rainfall had 
a significant positive effect on the total area burnt (Van Wilgen et 
al., 2004). However, despite the positive effect of increased rainfall, 
overall total area burnt still declined. Managers may indirectly affect 
the fire regime (e.g. by fragmenting the landscape through roads/
fire breaks or modifying herbivore distribution through construction 
of artificial water points) (Beale et al., 2013). They can also have di‐
rect impacts, particularly on fire size and season, but the profusion 
of sources of ignition limits manager’s ability to alter the total area 
burnt (Alvarado, Silva, & Archibald, 2018; Van Wilgen et al., 2004). 
Van Wilgen et al. (2004) examined fire management approaches 
in Kruger National Park over a 45 year period and found that total 
area burnt was a function of rainfall and largely independent of fire 
management policy, although season of fire could be influenced. We 
observed fewer fires in the Maasai Mara, suggesting that the policy 
of fire suppression there is having an effect. However, we did not 
observe a temporal change in the number of fires or total area burnt 

in the Maasai Mara, and management in those areas where a decline 
was observed was not aiming to suppress fire, so it seems unlikely 
that direct fire suppression by managers could be responsible for 
such large decreases in the area burnt.

In the 1960s and 1970s the Serengeti‐Mara’s wildebeest in‐
creased in abundance roughly sixfold, resulting in a reduction in 
the area burnt through their consumption of grass biomass (Dublin, 
1995). Wildebeest abundance stabilized around the mid 1990s 
(Holdo et al., 2009; Hopcraft et al., 2015), so it is unlikely that an 
increase in the wildebeest population accounts for the reduction 
in the area burnt that we observed. It is possible that localized 
changes in the distribution of wild grazers mediate the fire regime 
at finer scales (Kimuyu, Sensenig, Riginos, Veblen, & Young, 2014). 
The organizations managing Grumeti, Maswa and Mwiba have all 
changed within our study period, leading to changes in manage‐
ment approaches to burning and the intensity of other interven‐
tions. In Grumeti there was a fourfold increase in the biomass of 
resident wild herbivores between 2003 and 2015, including a ten‐
fold increase in its buffalo (Syncerus caffer Sparrman, 1779) popu‐
lation (Goodman & Mbise, 2016). This increase is not possible by 
reproduction alone and must, therefore, be caused by movement 
of buffalo into Grumeti from other areas of the Serengeti‐Mara, 
indicating that dispersal may drive local increases and decreases in 
wild herbivore abundance. However, in Grumeti there was no sig‐
nificant change in any of the six characteristics of the fire regime 
we examined, suggesting that either the increase in wild herbivore 
abundance was having no effect, perhaps because the area’s high 
rainfall offsets any impact, or more likely that the effect was being 
offset by other management actions, such as the exclusion of cat‐
tle encroachment and the manipulation of fire ignitions, size and 
frequency. Without spatially explicit data on wild herbivore abun‐
dance it is impossible to test this quantitatively, but it is clear that 
local shifts in wild herbivore abundance are occurring and it is likely 
that these shifts and interactions with other ecosystem drivers will 
have some influence on fire regimes (Goodman & Mbise, 2016).

Boma density, and associated livestock density and grazing, 
was strongly implicated as the key factor driving the decline in the 
area burnt over our study period. By consuming grass biomass, 
livestock reduce the available fuel, limiting the ability of fires to 
spread to the point where they are not large enough to be de‐
tected by MODIS (Archibald et al., 2009; Donaldson et al., 2018), 
and highlighting the importance of fuel loads over ignitions in sa‐
vannah systems (Archibald et al., 2013; Archibald, Scholes, et al., 
2010; Frost, 1999). Our analysis found the relationship between 
boma density and the area burnt differed depending on whether 
management units excluded (SNP, Grumeti and Maswa) or permit‐
ted livestock (NCA, Loliondo and the buffer zone). Any manage‐
ment activity which alters the fuel load will automatically alter fire, 
whether this is intended or not (e.g. Smit & Archibald, 2019). Our 
results suggest that management decisions and actions related to 
livestock may represent the largest effect land managers can have 
on fire regimes. Previous studies in the Serengeti‐Mara observed a  
decline in the area burnt as wild herbivore numbers increased 
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(Dublin, 1995); it is noteworthy that the decline we observed took 
place within the Serengeti‐Mara’s protected areas and was caused 
by increasing populations of relatively sedentary livestock, rather 
than seasonal grazing by migratory wild herbivores. Our findings 
also contrast previous studies which found that land‐cover change 
was restricted primarily to the Kenyan sector of the Serengeti‐
Mara (Homewood et al., 2001).

Overgrazing is politically loaded term frequently cited as 
a cause of degradation in savannah and grassland ecosystems 
(Brauch & Spring, 2009; Oldeman, Hakkeling, & Sombroek, 1990), 
leading to reduced biodiversity (Alkemade, Reid, Berg, Leeuw, 
& Jeuken, 2013), increased soil erosion (Kosmas et al., 2015), de‐
creased soil carbon storage (Dlamini, Chivenge, & Chaplot, 2016), 
bush encroachment (Coetzee, Tincani, Wodu, & Mwasi, 2008) and 
desertification (Homewood & Rodgers, 1987). We can add the mod‐
ification of fire regimes, and specific characteristics of fire, to this 
list (Archibald et al., 2012; Hempson et al., 2018). In the buffer zone 
and parts of Ngorongoro and Loliondo the area burnt has been re‐
duced to virtually zero. This exclusion of fire represents a substan‐
tial shift in the dominant driver of spatial heterogeneity in these 
areas, a shift which is outside the range of variation with which this 
system evolved (Gillson & Duffin, 2007), and which may surpass 
critical ecological thresholds (Gillson & Ekblom, 2009) and lead to a 
change in stable state (Eby, Agrawal, Majumder, Dobson, & Guttal, 
2017). Fire plays an important role in governing the structure and 
function of the Serengeti‐Mara (Anderson et al., 2007; Holdo et al., 
2009) and its exclusion could lead to an increase in bush encroach‐
ment (O’Connor, Puttick, & Hoffman, 2014) and the displacement of 
wild herbivores (Madhusudan, 2004). This will simultaneously limit 
productivity in terms of pastoralism and tourism; the two principal 
means of income generation in the region. Existing livestock densi‐
ties in some areas may be too high for savannahs to persist in their 
current state. There is, therefore, an urgent need to re‐evaluate the 
condition of and approaches to management for these areas to en‐
sure the success of both conservation objectives and the socio‐eco‐
nomic prosperity of the Serengeti‐Mara’s human population.

This is the first study to document the spatial and temporal fire 
patterns and drivers across the wider Serengeti‐Mara ecosystem. 
Our findings are consistent with studies reporting a global decline 
in the area burnt and raising concerns about the impact this decline 
has on the ecology of these ecosystems (Andela et al., 2017). The 
suppression of fire is likely to result in changes in the structure, func‐
tion and biodiversity of some areas of the Serengeti‐Mara which may 
not be compatible with the objectives of the stakeholders involved 
in these areas (Trollope, Trollope, & Hartnett, 2002). For instance, a 
possible consequence of a decline in the area burnt is the increase in 
understorey tree and bush recruitment recently documented in the 
Serengeti‐Mara (Holdo, Anderson, & Morrison, 2014; O’Connor et al., 
2014). Our results suggest that some areas of the Serengeti‐Mara 
may already have been substantially modified and the widespread 
decreasing trend in the number of fires and the area burnt indicates 
other areas require close monitoring to achieve the desired man‐
agement outputs. If periodic burning is incorporated into an explicit 

management plan, then our results suggest that altering the fire‐sup‐
pressive effects of intense grazing by resident livestock will result in 
more fires and a larger total area burnt. Our findings underscore the 
importance of managers monitoring fire, using the information they 
gather to inform future management decisions and to develop fire 
regimes that promote management objectives and contribute to the 
spatiotemporal resiliency of the savannah ecosystems in the region.
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