24 research outputs found

    Chemical dissociation of human awareness: focus on non-competitive NMDA receptor antagonists

    Full text link
    Since the mid-1950s the pharmaceutical industry has developed a number of chemicals, including phencyclidine, ketamine and related arylcyclohexylamines (PCE and TCP), dizocilpine (MK-801), N-allylnormetazocine [ NANM, (±)SKF-10,047], etoxadrol, dioxadrol and its enantiomers dexoxadrol and levoxadrol, which produce a constellation of unusual behavioral effects in animals and man. The compounds best studied in humans are phencyclidine and ketamine. They produce a remarkable dose-dependent dissociation of awareness. All of these substances are now known to be non-competitive antagonists of NMDA receptors of glutamic acid. They act in the NMDA receptor ion channel. One can conclude, on the basis of the effects observed with these agents, that glutamic acid and related excitatory amino acids are extremely important in the maintenance of human awareness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68872/2/10.1177_026988119200600312.pd

    "4D Biology for health and disease" workshop report

    Get PDF
    The "4D Biology Workshop for Health and Disease", held on 16-17th ofMarch 2010 in Brussels, aimed at finding the best organising principlesfor large-scale proteomics, interactomics and structural genomics/biology initiatives, and setting the vision for future high-throughputresearch and large-scale data gathering in biological and medical science.Major conclusions of the workshop include the following. (i)Development of new technologies and approaches to data analysis iscrucial. Biophysical methods should be developed that span a broadrange of time/spatial resolution and characterise structures andkinetics of interactions. Mathematics, physics, computational andengineering tools need to be used more in biology and new tools needto be developed. (ii) Database efforts need to focus on improveddefinitions of ontologies and standards so that system-scale data andassociated metadata can be understood and shared efficiently. (iii)Research infrastructures should play a key role in fosteringmultidisciplinary research, maximising knowledge exchange betweendisciplines and facilitating access to diverse technologies. (iv)Understanding disease on a molecular level is crucial. Systemapproaches may represent a new paradigm in the search for biomarkersand new targets in human disease. (v) Appropriate education andtraining should be provided to help efficient exchange of knowledgebetween theoreticians, experimental biologists and clinicians. Theseconclusions provide a strong basis for creating major possibilities inadvancing research and clinical applications towards personalisedmedicine.Biophysical Structural Chemistr

    Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis

    Get PDF
    Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase-dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT-MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B-dependent kinetochore phosphorylation
    corecore