204 research outputs found

    Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training

    Get PDF
    We sought to ascertain the time course of transcriptional events that occur in human skeletal muscle at the outset of resistance exercise (RE) training in RE naive individuals and determine whether the magnitude of response was associated with exercise-induced muscle damage. Sixteen RE naive men were recruited; eight underwent two sessions of 5 × 30 maximum isokinetic knee extensions (180°/s) separated by 48 h. Muscle biopsies of the vastus lateralis, obtained from different sites, were taken at baseline and 24 h after each exercise bout. Eight individuals acted as nonexercise controls with biopsies obtained at the same time intervals. Transcriptional changes were assessed by microarray and protein levels of heat shock protein (HSP) 27 and αB-crystallin in muscle cross sections by immunohistochemistry as a proxy measure of muscle damage. In control subjects, no probe sets were significantly altered (false discovery rate < 0.05), and HSP27 and αB-crystallin protein remained unchanged throughout the study. In exercised subjects, significant intersubject variability following the initial RE bout was observed in the muscle transcriptome, with greatest changes occurring in subjects with elevated HSP27 and αB-crystallin protein. Following the second bout, the transcriptome response was more consistent, revealing a cohort of probe sets associated with immune activation, the suppression of oxidative metabolism, and ubiquitination, as differentially regulated. The results reveal that the initial transcriptional response to RE is variable in RE naive volunteers, potentially associated with muscle damage and unlikely to reflect longer term adaptations to RE training. These results highlight the importance of considering multiple time points when determining the transcriptional response to RE and associated physiological adaptation

    Anomalous buried hollows in London: development of a hazard susceptibility map

    Get PDF
    Engineering works carried out in central London over many decades have revealed a number of buried hollows that exhibit curious characteristics. Some extend deep into the bedrock geology and are in-filled with disturbed superficial deposits and reworked bedrock. Others are contained within the superficial deposits. They can be up to 500 m wide and more than 60 m in depth. As the infill material often has different behavioural characteristics from the surrounding deposits failure to identify them during an initial site investigation can prove costly. This paper considers their common characteristics and describes the method used to develop a buried hollow hazard susceptibility map. This map provides planners with a broader awareness of the potential location of difficult ground conditions associated with them, thereby reducing the potential for unforeseen ground conditions through effective site investigation design. The paper continues with a discussion of some of the likely processes associated with their formation, which are attributed to cryogenic processes, and concludes with potential future research directions

    Which features of UK farmland are important in retaining territories of the rapidly declining Turtle Dove Streptopelia turtur?

    Get PDF
    Capsule Turtle Doves continue to show a strong population decline; territories were more likely to be retained in areas with more nesting habitat, and more suitable foraging habitat. Aim To determine which features of farmland in England are important for retaining Turtle Dove territories Methods Fifty-eight grid squares with recent records of territorial Turtle Doves were resurveyed, and squares retaining Turtle Dove territories compared with those from which Turtle Doves had been lost. Results Turtle Dove territories were detected in 48% of squares resurveyed. When correcting for the 70% detection rate of the survey methodology, territories were present in 66% of squares surveyed suggesting a 34% decline over a 2-year period. Established scrub and hedgerows > 4 m tall positively influenced Turtle Dove presence and abundance, as did standing water. Bare ground and fallow had positive effects on Turtle Dove abundance whereas grazed land negatively impacted abundance. Conclusion The positive effects of area of established scrub and volume of large hedgerows are likely to represent a declining density of birds selecting the best quality nest sites. We suggest instead that foraging habitat may be limiting distribution

    An adaptive annual rhythm in the sex of first pigeon eggs

    Get PDF
    When the reproductive value of male and female offspring varies differentially, parents are predicted to adjust the sex ratio of their offspring to maximize their fitness (Trivers and Willard, Science 179:90–92, 1973). Two factors have been repeatedly linked to skews in avian offspring sex ratio. First, laying date can affect offspring sex ratio when the sexes differ in age of first reproduction, such that the more slowly maturing sex is overproduced early in the season. Second, position of the egg in the laying sequence of a clutch may affect sex ratio bias since manipulating the sex of the first eggs may be least costly to the mother. We studied both factors in two non-domesticated pigeon species. Both the Wood pigeon (Columba palumbus) and the Rock pigeon (Columba livia) have long breeding seasons and lay two-egg clutches. In the field, we determined the sex of Wood pigeon nestlings. In Rock pigeons, housed in captivity outdoors, we determined embryo sex after 3 days of incubation. On the basis of their sex-specific age of first reproduction, we predicted that males, maturing at older age than females, should be produced in majority early and females later in the year. This was confirmed for both species. The bias was restricted to first eggs. Rock pigeons produced clutches throughout the year and show that the sex of the first egg followed an annual cycle. To our knowledge, this study presents the first evidence of a full annual rhythm in adaptive sex allocation in birds. We suggest that this reflects an endogenous seasonal program in primary sex ratio controlled by a preovulatory mechanism

    Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands

    Get PDF
    Permafrost stores globally significant amounts of carbon (C) which may start to decompose and be released to the atmosphere in form of carbon dioxide (CO 2 ) and methane (CH 4 ) as global warming promotes extensive thaw. This permafrost carbon feedback to climate is currently considered to be the most important carbon-cycle feedback missing from climate models. Predicting the magnitude of the feedback requires a better understanding of how differences in environmental conditions post-thaw, particularly hydrological conditions, control the rate at which C is released to the atmosphere. In the sporadic and discontinuous permafrost regions of north-west Canada, we measured the rates and sources of C released from relatively undisturbed ecosystems, and compared these with forests experiencing thaw following wildfire (well-drained, oxic conditions) and collapsing peat plateau sites (water-logged, anoxic conditions). Using radiocarbon analyses, we detected substantial contributions of deep soil layers and/or previously-frozen sources in our well-drained sites. In contrast, no loss of previously-frozen C as CO 2 was detected on average from collapsed peat plateaus regardless of time since thaw and despite the much larger stores of available C that were exposed. Furthermore, greater rates of new peat formation resulted in these soils becoming stronger C sinks and this greater rate of uptake appeared to compensate for a large proportion of the increase in CH 4 emissions from the collapse wetlands. We conclude that in the ecosystems we studied, changes in soil moisture and oxygen availability may be even more important than previously predicted in determining the effect of permafrost thaw on ecosystem C balance and, thus, it is essential to monitor, and simulate accurately, regional changes in surface wetness

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation

    Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells.

    Get PDF
    LCK is a tyrosine kinase that is essential for initiating T-cell antigen receptor (TCR) signaling. A complete understanding of LCK function is constrained by a paucity of methods to quantitatively study its function within live cells. To address this limitation, we generated LCK*, in which a key active-site lysine is replaced by a photocaged equivalent, using genetic code expansion. This strategy enabled fine temporal and spatial control over kinase activity, thus allowing us to quantify phosphorylation kinetics in situ using biochemical and imaging approaches. We find that autophosphorylation of the LCK active-site loop is indispensable for its catalytic activity and that LCK can stimulate its own activation by adopting a more open conformation, which can be modulated by point mutations. We then show that CD4 and CD8, T-cell coreceptors, can enhance LCK activity, thereby helping to explain their effect in physiological TCR signaling. Our approach also provides general insights into SRC-family kinase dynamics
    corecore