148 research outputs found

    Integrin-mediated axoglial interactions initiate myelination in the central nervous system

    Get PDF
    All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative β1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative β3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that β1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons

    Intrinsic and adaptive myelination - a sequential mechanism for smart wiring in the brain

    Get PDF
    The concept of adaptive myelination—myelin plasticity regulated by activity—is an important advance for the field. What signals set up the adaptable pattern in the first place? Here we review work that demonstrates an intrinsic pathway within oligodendrocytes requiring only an axon-shaped substrate to generate multilayered and compacted myelin sheaths of a physiological length. Based on this, we discuss a model we proposed in 2015 which argues that myelination has two phases—intrinsic and then adaptive—which together generate “smart wiring,” in which active axons become more myelinated. This model explains why prior studies have failed to identify a signal necessary for central nervous system myelination and argues that myelination, like synapses, might contribute to learning by the activity-dependent modification of an initially hard-wired pattern

    CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes

    Get PDF
    SummarySince Río-Hortega’s description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions [1–3]. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization [4]. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length [1, 5, 6], as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths [7, 8]. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths [9–12]. We test this alternative signal-independent hypothesis—that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo

    Belajar Manajemen dari Konsultasi Strategi

    No full text
    vi, 126 hlm.; 23 x 15 c

    Rangkuman Pengetahuan ALam Terlengkap RPAT Untuk SD

    No full text

    BISNIS TAHAN BANTING SAMBUT MEA/SM-16

    No full text
    155hlm;13x20c

    Menciptakan SDM Yang Handal Dengan Training Coaching dan Motivation

    No full text
    viii. 130 hal. 23 c

    All About Kesehatan Anak

    No full text
    • …
    corecore