2,718 research outputs found

    LegumeGRN: a gene regulatory network prediction server for functional and comparative studies

    Get PDF
    Building accurate gene regulatory networks (GRNs) from high-throughput gene expression data is a long-standing challenge. However, with the emergence of new algorithms combined with the increase of transcriptomic data availability, it is now reachable. To help biologists to investigate gene regulatory relationships, we developed a web-based computational service to build, analyze and visualize GRNs that govern various biological processes. The web server is preloaded with all available Affymetrix GeneChip-based transcriptomic and annotation data from the three model legume species, i.e., Medicago truncatula, Lotus japonicus and Glycine max. Users can also upload their own transcriptomic and transcription factor datasets from any other species/organisms to analyze their in-house experiments. Users are able to select which experiments, genes and algorithms they will consider to perform their GRN analysis. To achieve this flexibility and improve prediction performance, we have implemented multiple mainstream GRN prediction algorithms including co-expression, Graphical Gaussian Models (GGMs), Context Likelihood of Relatedness (CLR), and parallelized versions of TIGRESS and GENIE3. Besides these existing algorithms, we also proposed a parallel Bayesian network learning algorithm, which can infer causal relationships (i.e., directionality of interaction) and scale up to several thousands of genes. Moreover, this web server also provides tools to allow integrative and comparative analysis between predicted GRNs obtained from different algorithms or experiments, as well as comparisons between legume species. The web site is available at http://legumegrn.noble.org.Oklahoma Center for The Advancement of Science and Technology: (OCAST Grant No. PSB11-031)

    Accelerated versus standard epirubicin followed by cyclophosphamide, methotrexate, and fluorouracil or capecitabine as adjuvant therapy for breast cancer in the randomised UK TACT2 trial (CRUK/05/19): a multicentre, phase 3, open-label, randomised, controlled trial.

    Get PDF
    BACKGROUND: Adjuvant chemotherapy for early breast cancer has improved outcomes but causes toxicity. The UK TACT2 trial used a 2×2 factorial design to test two hypotheses: whether use of accelerated epirubicin would improve time to tumour recurrence (TTR); and whether use of oral capecitabine instead of cyclophosphamide would be non-inferior in terms of patients' outcomes and would improve toxicity, quality of life, or both. METHODS: In this multicentre, phase 3, randomised, controlled trial, we enrolled patients aged 18 years or older from 129 UK centres who had histologically confirmed node-positive or high-risk node-negative operable breast cancer, had undergone complete excision, and were due to receive adjuvant chemotherapy. Patients were randomly assigned to receive four cycles of 100 mg/m2 epirubicin either every 3 weeks (standard epirubicin) or every 2 weeks with 6 mg pegfilgrastim on day 2 of each cycle (accelerated epirubicin), followed by four 4-week cycles of either classic cyclophosphamide, methotrexate, and fluorouracil (CMF; 600 mg/m2 cyclophosphamide intravenously on days 1 and 8 or 100 mg/m2 orally on days 1-14; 40 mg/m2 methotrexate intravenously on days 1 and 8; and 600 mg/m2 fluorouracil intravenously on days 1 and 8 of each cycle) or four 3-week cycles of 2500 mg/m2 capecitabine (1250 mg/m2 given twice daily on days 1-14 of each cycle). The randomisation schedule was computer generated in random permuted blocks, stratified by centre, number of nodes involved (none vs one to three vs four or more), age (≤50 years vs >50 years), and planned endocrine treatment (yes vs no). The primary endpoint was TTR, defined as time from randomisation to first invasive relapse or breast cancer death, with intention-to-treat analysis of standard versus accelerated epirubicin and per-protocol analysis of CMF versus capecitabine. This trial is registered with ISRCTN, number 68068041, and with ClinicalTrials.gov, number NCT00301925. FINDINGS: From Dec 16, 2005, to Dec 5, 2008, 4391 patients (4371 women and 20 men) were recruited. At a median follow-up of 85·6 months (IQR 80·6-95·9) no significant difference was seen in the proportions of patients free from TTR events between the accelerated and standard epirubicin groups (overall hazard ratio [HR] 0·94, 95% CI 0·81-1·09; stratified p=0·42). At 5 years, 85·9% (95% CI 84·3-87·3) of patients receiving standard epirubicin and 87·1% (85·6-88·4) of those receiving accelerated epirubicin were free from TTR events. 4358 patients were included in the per-protocol analysis, and no difference was seen in the proportions of patients free from TTR events between the CMF and capecitabine groups (HR 0·98, 95% CI 0·85-1.14; stratified p=0·00092 for non-inferiority). Compared with baseline, significantly more patients taking CMF than those taking capecitabine had clinically relevant worsening of quality of life at end of treatment (255 [58%] of 441 vs 235 [50%] of 475; p=0·011) and at 12 months (114 [34%] of 334 vs 89 [22%] of 401; p<0·001 at 12 months) and had worse quality of life over time (p<0·0001). Detailed toxicity and quality-of-life data were collected from 2115 (48%) of treated patients. The most common grade 3 or higher adverse events in cycles 1-4 were neutropenia (175 [16%]) and fatigue (56 [5%]) of the 1070 patients treated with standard epirubicin, and fatigue (63 [6%]) and infection (34 [3%]) of the 1045 patients treated with accelerated epirubicin. In cycles 5-8, the most common grade 3 or higher adverse events were neutropenia (321 [31%]) and fatigue (109 [11%]) in the patients treated with CMF, and hand-foot syndrome (129 [12%]) and diarrhoea (67 [6%]) in the 1044 patients treated with capcitabine. INTERPRETATION: We found no benefit from increasing the dose density of the anthracycline component of chemotherapy. However, capecitabine could be used in place of CMF without significant loss of efficacy and with improved quality of life. FUNDING: Cancer Research UK, Amgen, Pfizer, and Roche

    Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report.

    Get PDF
    We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.Sally Hunter and Carol Brayne are supported by funding from the National Institute for Health Research, Senior Investigator Award, awarded to Carol Brayne. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. Sally Hunter is supported by the Addenbrooke’s Charitable Trust, the Paul G. Allen Family Foundation and Alzheimer’s Research, UK. Suvi Hokkanen was supported by Alzheimer’s Research, UK

    Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE): Consensus Working Group Report

    Get PDF
    We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer’s-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the ‘oldest-old’ are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer’s disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials

    Replacement of α-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients

    Get PDF
    The function and intracellular delivery of enzyme therapeutics for Fabry disease were studied in cultured fibroblasts and in the biopsied tissues of two male patients to show diversity of affected cells in response to treatment. In the mutant fibroblasts cultures, the final cellular level of endocytosed recombinant α-galactosidases A (agalsidases, FabrazymeTM, and ReplagalTM) exceeded, by several fold, the amount in control fibroblasts and led to efficient direct intra-lysosomal hydrolysis of (3H)Gb3Cer. In contrast, in the samples from the heart and some other tissues biopsied after several months of enzyme replacement therapy (ERT) with FabrazymeTM, only the endothelial cells were free of storage. Persistent Gb3Cer storage was found in cardiocytes (accompanied by increase of lipopigment), smooth muscle cells, fibroblasts, sweat glands, and skeletal muscle. Immunohistochemistry of cardiocytes demonstrated, for the first time, the presence of a considerable amount of the active enzyme in intimate contact with the storage compartment. Factors responsible for the limited ERT effectiveness are discussed, namely post-mitotic status of storage cells preventing their replacement by enzyme supplied precursors, modification of the lysosomal system by longstanding storage, and possible relative lack of Sap B. These observations support the strategy of early treatment for prevention of lysosomal storage

    Elevated blood lead levels are associated with reduced risk of malaria in Beninese infants

    Get PDF
    Introduction Elevated blood lead levels (BLL) and malaria carry an important burden of disease in West Africa. Both diseases might cause anemia and they might entail long-term consequences for the development and the health status of the child. Albeit the significant impact of malaria on lead levels described in Nigeria, no evaluation of the effect of elevated BLL on malaria risk has been investigated so far. Materials and Methods Between 2010 and 2012, blood lead levels of 203 Beninese infants from Allada, a semi-rural area 50km North from Cotonou, were assessed at 12 months of age. To assess lead levels, blood samples were analyzed by mass spectrometry. In parallel, clinical, microbiological and hematological data were collected. More precisely, hemoglobin, serum ferritin, CRP, vitamin B12, folate levels, and Plasmodium falciparum parasitemia were assessed and stool samples were also analyzed. Results At 12 months, the mean BLL of infants was 7.41 μg/dL (CI: 65.2; 83), and 128 infants (63%) had elevated blood lead levels, defined by the CDC as BLL>5 μg/dL. Lead poisoning, defined as BLL>10 μg/dL, was found in 39 infants (19%). Twenty-five infants (12.5%) had a positive blood smear at 12 months and 144 infants were anemic (71%, hemoglobin<110 g/L). Elevated blood lead levels were significantly associated with reduced risk of a positive blood smear (AOR = 0.38, P-value = 0.048) and P. falciparum parasite density (beta-estimate = -1.42, P-value = 0.03) in logistic and negative binomial regression multivariate models, respectively, adjusted on clinical and environmental indicators. Conclusion Our study shows for the first time that BLL are negatively associated with malarial risk considering other risk factors. Malaria is one of the main causes of morbidity and mortality in infants under 5 years worldwide, and lead poisoning is the 6th most important contributor to the global burden of diseases measured in disability adjusted life years (DALYs) according to the Institute of Health Metrics. In conclusion, due to the high prevalence of elevated BLL, health interventions should look forward to minimize the exposure to lead to better protect the population in West Africa

    WOSMIP II- Workshop on Signatures of Medical and Industrial Isotope Production

    Get PDF
    Medical and industrial fadioisotopes are fundamental tools used in science, medicine and industry with an ever expanding usage in medical practice where their availability is vital. Very sensitive environmental radionuclide monitoring networks have been developed for nuclear-security-related monitoring [particularly Comprehensive Test-Ban-Treaty (CTBT) compliance verification] and are now operational
    • …
    corecore