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Abstract

Building accurate gene regulatory networks (GRNs) from high-throughput gene expression data is a long-standing
challenge. However, with the emergence of new algorithms combined with the increase of transcriptomic data availability,
it is now reachable. To help biologists to investigate gene regulatory relationships, we developed a web-based
computational service to build, analyze and visualize GRNs that govern various biological processes. The web server is
preloaded with all available Affymetrix GeneChip-based transcriptomic and annotation data from the three model legume
species, i.e., Medicago truncatula, Lotus japonicus and Glycine max. Users can also upload their own transcriptomic and
transcription factor datasets from any other species/organisms to analyze their in-house experiments. Users are able to
select which experiments, genes and algorithms they will consider to perform their GRN analysis. To achieve this flexibility
and improve prediction performance, we have implemented multiple mainstream GRN prediction algorithms including co-
expression, Graphical Gaussian Models (GGMs), Context Likelihood of Relatedness (CLR), and parallelized versions of TIGRESS
and GENIE3. Besides these existing algorithms, we also proposed a parallel Bayesian network learning algorithm, which can
infer causal relationships (i.e., directionality of interaction) and scale up to several thousands of genes. Moreover, this web
server also provides tools to allow integrative and comparative analysis between predicted GRNs obtained from different
algorithms or experiments, as well as comparisons between legume species. The web site is available at http://legumegrn.
noble.org.
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Introduction

In the post-genomics era, construction of gene regulatory

networks (GRNs) and modelling gene interactions are important

tasks in functional genomics and systems biology. The genome

encodes thousands of genes whose products enable cell develop-

ment and various cellular functions in response to diverse

extracellular signals. Genes and gene products interact with each

other to comprise a highly structured regulatory network. The

accumulation of high-throughput gene expression data (such as,

microarrays and RNA-seq data) provides great potential to

uncover these complex gene regulatory networks that underlie

biological functions, as those data provide snapshots of the

transcriptome under many tested experimental conditions. For

instance, legumes (Fabaceae or Leguminosae) constitute the third

largest family of flowering plants and serve as an important source

of food for humans and animals. Many legumes are capable of

fixing atmospheric nitrogen through their symbiotic relationships

with rhizobia bacteria. This symbiosis forms a major source of

organic nitrogen fertilizer. Understanding this symbiosis is

important for plant and microbial biology as well as for sustainable

agriculture. In the past years, we have developed two important

gene expression atlases for legume model species, i.e., Medicago

truncatula [1,2] and Lotus japonicus [3]. These two web sites have

received wide attention from the legume community (e.g., the

Medicago gene atlas has processed .100,000 analysis requests

and has been cited over 200 times). The next step for these two

gene atlases is to provide more complex analysis services in order

to generate new knowledge about gene regulations and functions

using GRN predictions.

To gain insight into these gene interactions, bioinformatics tools

for GRN analysis are needed to generate hypotheses from high-

throughput datasets. However, most of the current statistical or

computational tools are difficult to access for most biologists.

Although several web-based tools [4,5,6,7,8] have been developed

to retrieve known or predicted gene-gene interactions based on

existing knowledge, most of them are static databases and do not

provide a dynamic GRN prediction function according to users’

requests. In other words, there is no way for end users to submit

their own data or select specific datasets to perform personal GRN
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inferences. Two exceptions are GenePattern [9] and Predictive-

Networks [10]. However, PredictiveNetworks focuses exclusively

on human datasets and GenePattern only provides GRN inference

but no network query or visualization.

On other hand, numerous computational methods for GRN

prediction have been recently proposed or applied. These methods

include co-expression or relevance network (RNs) [11], graphical

Gaussian modelling (GGM) [12], Boolean network [13,14],

differential equations [15], information theory [16,17], Bayesian

network (BN) [18,19], regression models [20], among many others

[21,22]. However, two key problems still hinder their successful

applications in practical GRN inferences. One is that the quality of

network inference is not robust and stable [23,24]. To illustrate

this point, some studies [24] showed that half of algorithms only

performed better than random guessing. A second problem is that

some sophisticated models (such as, Bayesian networks) are time-

consuming and infeasible for large datasets with several thousand

genes and a large number of experiments.

To address these issues, we developed a flexible, open-source,

web-based application and data service framework for GRN

analysis using gene expression data (http://legumegrn.noble.org).

In this web site, we integrated several commonly used GRN

prediction algorithms including co-expression, GGMs [12],

Context Likelihood of Relatedness (CLR) [16], GENIE3 [21],

TIGRESS [20]. We parallelized GENIE3 and TIGRESS to make

them feasible for large datasets. In addition, we also proposed a

parallel version of the constraint-based BN learning algorithm

called the PLPC algorithm, which is able to infer causal

relationships or directionalities. To further improve prediction

performance, our system is able to integrate prediction results from

individual methods into a composite network to provide more

accurate results. In addition to GRN prediction, we also

implemented several features for GRN analysis such as GRN

comparisons, GRN subnetwork query and GRN visualization.

Although users are able to upload their own datasets, a special

focus on legumes has been made by preloading into the web server

all the Affymetrix GeneChip based gene expression data and

annotation files publicly available from the three legume model

species, M. truncatula, L. japonicus and G. max. Thus, the web site

allows users to simply upload gene or probeset lists, and then select

existing gene expression experiments (i.e., chips) and specific

algorithms to perform GRN prediction in these three legume

species. An additional feature allows users to finally identify

conserved or divergent gene regulatory programs across these

three species.

Methods and Content

Data Sets
To facilitate GRN analysis for legume species, we have collected

all M. truncatula, L. japonicus and G. max Affymetrix microarray

datasets from public EBI microarray database and from our

collaborators. In total, we have collected 670 Medicago chips, 237

Lotus chips and 913 soybean chips. We then normalized all the

raw data using Robust Multichip Averaging (RMA) through R

and uploaded them into our database. To permit analysis of user-

generated datasets or of data available from other species, we

provided options for users to upload their own expression data in

tab-delimited text format.

To check ‘‘batch effects’’ (the systematic error introduced by the

different sources of data), we analysed transcriptomes of major

plant tissues from experiments carried out at different locations for

Medicago. From Principal Components Analysis (PCA), we

observed that all the organs were well grouped in the PCA plot

(Figure S1), which demonstrated that ‘‘batch effects’’ related to

data sources are negligible in major organs of Medicago dataset.

This analysis was not possible in Lotus and soybean due to the low

redundancy of experiments between data sources. Moreover, to

ensure users to compare relevant experiments, we provided

correlation coefficients matrices between all experiment pairs for

each species (the data are available at http://legumegrn.noble.

org/cc.html).

The GRN Inference Algorithms
To support custom GRN predictions, we implemented a multi-

algorithm program that assists in the construction of gene

networks for gene expression data. Multiple GRN prediction

algorithms can complement each other and compensate for the

limitations of a single GRN prediction approach to improve the

prediction accuracy. Based on the literature and previous

comparisons of GRNs [9,25], we adopted GGM [12], co-

expression [11], GENIE3 [21], TIGRESS [26] and CLR [16]

as the major algorithms because of their good performances in

each category of algorithms when testing over DREAM5

(Dialogue for Reverse Engineering Assessments and Methods)

Network Challenge (http://www.the-dream-project.org/), a com-

petition race in reverse engineering of GRNs [27]. We parallelized

two GRN prediction algorithms, TIGRESS and GENIE3, to

reduce their computation time for large data sets.

In addition, we also proposed a parallel constraint-based

algorithm called PLPC (i.e., Parallel Low-order PC Algorithm),

which is a parallelized version of our previous algorithm [25]

based on a Bayesian network (BN) model. BNs are well suited for

inferring gene networks because of their ability to model causal

influence (cause-effect) between variables (i.e., genes). Most of BN

learning algorithms are very time-consuming and hard to scale up

to several thousand genes. Thus, we used parallel computing and

restrained the highest order (means the size of conditioning set) in

conditional independence (CI) tests to achieve feasibilities for large

datasets; meanwhile, we also combined the idea used in the PC-

stable algorithm [28] to improve performance. The details about

this algorithm can be found in the File S1.

GRN Integration
This integrative approach, also called ensemble analysis, has

already been successfully applied in machine learning [29]. The

basic idea of the ensemble analysis is that the combination of

multiple models will obtain better predictive performance than

any constituent individual algorithm. Previous studies [9,30,31]

also demonstrated that ensemble analyses could be applied into

GRN predictions and improve prediction accuracy.

Users can compare and integrate multiple networks predicted

by different algorithms, and perform GRN integrative analyses

using LegumeGRN. The web server is able to overlay multiple

GRNs and construct a composite network, which allows users to

investigate similarities and differences of multiple predicted

structures. We use the adjacency matrix to combine and integrate

multiple GRNs and generate the final combination result. In this

procedure, we adopted an integrated score, where each edge is

rescored using the average rank across all constituent inference

methods. This integrative method, called Borda count election

[32], was initially used for ranking candidates from a democratic

election and has been successfully applied to GRN integrative

analysis [9]. This method weights the confidence of each inferred

interaction in this composite network, where each edge is rescored

using the average rank across all K constituent inference methods

(i.e., GRN prediction algorithms). The value is defined by a

specific gene-gene connection (interaction) I predicted by the ith

A Gene Regulatory Network Prediction Server
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algorithm. Thus, the integrative value is:

r(I)~
XK

i~1
ri(I)

where ri(I) is the rank of the connection I predicted by the ith

method. Intuitively, this value is the sum of predictions from

individual approaches. Generally, this score will perform robustly

across diverse datasets comparing to the score returned from each

of the individual methods.

By combining the results of multiple algorithms, we observed an

improvement of prediction accuracy due to the complementary

advantages of each different individual algorithm (see case study

1).

Across Species Comparison
Another feature available for legume species is the gene network

comparison across different species (i.e., Medicago, Lotus and

soybean). Many components of regulatory networks governing

basic cellular functions are highly homologous in diverse species

[11]. This comparative transcriptomics approach will enable

detection of evolutionarily conserved GRNs. Comparison of

integrated (multi-species) GRNs with single-species GRNs will

also help place regulatory subnetworks (modules) into a phyloge-

netic context.

To compare GRNs in different species, we identified pairs of

related genes (i.e., orthologous genes) between these three species.

Each orthologous set was defined using a unique identifier, called a

metagene ID. Identification of ortholog sets across multiple species

was carried out using the BLAST algorithm and protein

sequences. Protein sequences were downloaded for Lotus (ftp://

ftp.kazusa.or.jp/pub/lotus/lotus_r2.5/), Medicago (ftp://ftp.jcvi.

org/pub/data/m_truncatula/Mt3.5/Annotation/Mt3.5v5/) and

soybean (ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/

Gmax/annotation/). We performed all-against-all BLASTP

between each pair of protein sequences from each species using

Reciprocal Best Hits (RBH). This method assumes that two genes

residing in two different genomes are deemed orthologs if their

protein products find each other as the best hit in the opposite

genome. In this procedure, we used an E-value of 161026 as the

threshold and the option ‘‘-F ‘m S’ –s T’’ in BLASTP because these

parameters have been demonstrated to better detect true

functional orthologs [33]. We sorted the BLASTP hits from

highest to lowest bit-score and if both the bit-scores and E-values

were identical (i.e., more than one best hit), we considered them as

multiple orthologs. In soybean, given its recent genome duplica-

tion, which led to multiple gene copies [34], we selected the best

two hits from BLASTP results to include in the reciprocal blast

analysis. All the probesets and gene IDs were mapped to metagene

IDs. Thus, GRNs from different species can be compared with

each other based on metagene IDs.

Annotation Data
To facilitate GRN analysis, we implemented the web server

with different functional annotations, such as KEGG annotation

from GeneBins and GO terms [35,36]. A module to identify

significant enrichment in GO terms of each (sub)network using the

chi-square test was developed and added to the web server. This

feature may allow the identification of molecular functions or

pathways in which most of the genes are involved. Additional gene

annotations have been added, such as predicted transcription

factor (TF) domains and tentative functional annotations for these

three legume species. We also mapped the probeset IDs with

related gene IDs obtained from IMGAG v.3.5 for Medicago,

Lotus v.2.5 for Lotus and Soybase (http://soybase.org) for

soybean. All these datasets were loaded into our databases to

allow users to use Gene IDs or probeset IDs interchangeably as

primary inputs.

Software Implementation and GRN Visualization
LegumeGRN is a J2EE web application with Tomcat as the

web server. The user interface was written in JSP and Servelet

with a significant reliance on JavaScript language and JQuery

libraries for front-end interactivity. AJAX was used for data

retrieval in network visualization. Users can access the web page

using any modern browser, including Microsoft Internet Explorer,

Google Chrome, Apple Safari and Mozilla Firefox.

On the back-end, we have set up a multiple-host cluster and

maintained a job scheduler using Oracle Grid Engineer to respond

to user requests. We have implemented the GRN prediction

algorithms in Matlab and R and deployed them into the cluster.

JAVA was used to write the application for processing user

requests, such as GRN prediction, subnetwork query, network

comparison and integrative analysis. This application also accesses

a MySQL database to manage the user’s personal analysis data,

microarray datasets and annotation data.

On the client-side, we used the open-source Cytoscape Web

[37] and AJAX to implement the visualization of GRNs on the

web site.

Utility
Personalized GRN analysis and workspace. To facilitate

their use of the database, users may create an account in this

server, which allows them to log in to submit new analysis tasks,

and to access and manage their analysis results from previous

sessions. Users can customize the datasets (gene/probeset lists,

microarray chips), select suitable algorithms and tune the

parameters as they wish, then submit GRN prediction requests.

They will get an ID for every submitted analysis request.

Afterwards, users can browse all requests in their own workspace

and view job running status, query, compare GRNs and retrieve

results using the job ID.

Primary input. The primary inputs of legumeGRN are a

gene expression data file and an optional transcription factor file.

Then, users can select the prediction algorithms and tune the

algorithm parameters to be used in the GRN construction

(Figure 1A). A short description of different algorithms is provided,

such as default parameters commonly used based in the published

literature. For legume species, users simply need to upload their

probeset or gene ID list and use checkboxes to select which

transcriptomic samples they wish to use to build their GRNs.

Output. After calculation, GRN prediction results are saved

into the LegumeGRN web server according to the users’ account.

This feature allows users to store and keep track of their analyses

and results. From the ‘‘analysis history’’ tab, users can retrieve all

their prediction analyses with information related to analysis date,

job title and description (optional), the transcriptomic dataset and

parameters of predictive algorithms. At this step, users can

download the network results and their related annotation

information as tab-delimited text files or analyse them using an

intuitive web-based GRN viewer to display the prediction results

as graphical output. (Figure 1B).

The visualization module consists of a client applet with several

features: display of genes as nodes and regulatory relationships as

directed or undirected edges; zoom in/zoom out, and subset

highlight. The connection strength and prediction approaches can

be shown respectively according to line width and color. The

annotation information (such as probeset ID, gene ID, tentative

A Gene Regulatory Network Prediction Server
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Figure 1. The snapshot of input and output web pages for GRN prediction. Figure 1A. A GRN prediction submission page. Figure 1B. A
predicted co-expression network for 1,321 Medicago tissue-specific probesets according to the Medicago truncatula Gene Expression Atlas [1].
doi:10.1371/journal.pone.0067434.g001
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annotation, GO term) and links to related gene expression data are

displayed by clicking on the node (i.e., gene model or probeset ID)

in the viewer window, when information is available. Clicking on

the edge displays the connection strength value returned by the

corresponding GRN prediction algorithm and a link to show the

gene expression profiles for the related gene pair. Users have also

the ability to export the whole network as an image to either PNG

or PDF file formats.

Subnetwork query. Global GRNs are usually too complex

to be displayed and analysed in an individual web page.

LegumeGRN allows users to generate a subnetwork from the

predicted GRN. The subnetwork consists of the immediate

connections of a specified gene list of interests or the first

connections of transcription factors. Users have another option to

select only the most important edges according to the confidence

ranking, which is generated by the GRN prediction algorithm.

Network comparisons. Users are able to select multiple

(sub-)networks using checkboxes and submit a GRN comparison

task. A composite network is generated by comparison analysis

and the GRN comparison within one species predicted by

different algorithms or across several species can be visualized

and downloaded from the web site.

For the GRN comparison within one species, each edge will be

marked in different colors, with each color representing connec-

tions inferred by an individual prediction algorithm. The

integrative score for each edge is calculated and listed in the text

file.

Another comparison feature compares gene networks across the

legume species available in legumeGRN (i.e., Medicago, Lotus

and soybean). The composite network generated by this analysis

includes metagene IDs and color-coded edges representing the

network connections generated for each different species. The

underlying related probeset IDs and gene IDs for each species can

be displayed by clicking the node.

Results

Case Study 1
One of the DREAM challenges (i.e., DREAM5) is to reverse

engineer gene regulatory networks from gene expression datasets

(http://wiki.c2b2.columbia.edu/dream/index.php/D5c4). To

validate the performance of our web site, we tested it using three

datasets from the DREAM5 in silico network inference challenges.

Two are experimental datasets obtained from microorganisms, E.

coli and S. cerevisiae. The third one is based on an artificial network,

which is a simulation dataset and derived from GeneNetWeaver

[9]. We listed these three datasets in Table 1. Network predictions

were evaluated on a subset of known interactions for each

organism, or on the known network for the artificial case. Using

LegumeGRN, evaluation of these datasets was performed to assess

the performances of all six algorithms and their related integrative

analysis for GRN combination. Although each algorithm has its

own scoring measurements for the strength of edges (i.e.,

interactions), the ranked lists of interactions were compared

against binary gold standard, performance was assessed by the

area under the receiver operating characteristic (ROC) curve

(AUROC) and the area under the precision vs. recall (PvsR) curve

(AUPR). For a traditional ROC curve, recall (NTP/(NTP+NFN)) is

plotted against 1-specificity (i.e., 1- NTN/(NTN+NFP)), and for a

PvsR curve, precision (NTP/(NTP+NFP)) is plotted against the recall

(NTP/(NTP+NFN)), where specificity, precision and recall are

computed over a range of pruning thresholds, then the AUC

values are obtained as the measurement scores, with higher scores

indicating better performance.

For the integrative analysis, we rescore each edge in the

integrated networks using average rank across all three best

inference algorithms.

We selected the top 100,000 edges returned from each

approach according to their confidence rankings for AUC

calculations. The AUPR and AUROC values of each approach

are listed in Table 2. From Table 2, we observed that not a single

method achieved best performance from all tests. However, the

integrative GRN prediction results always achieved best or second

best performance across all three datasets. It suggests that

integrative analysis performed more stably than individual GRN

prediction algorithms. The AUC scores are consistent with the test

results reported in previous study [9].

We further evaluated the accuracies of directionality prediction

using the PLPC algorithm, which is the only one for predicting

causal relationships. In Table 3, we listed the total edges, the true

positives (TPs) and the true positives with correct directionalities

predicted by PLPC for all three datasets. Here, we used a = 0.01

and ord = 8 as the input parameter. In all three cases, the directions

for most of the edges can be predicted. Interestingly, ratios

between TPs with correct directions and TPs are high. This

indicates that PLPC has high chance to identify the correct

regulation directionalities if edges are true positive. For the

artificial network, we observed 30.1% precision ( = NTP/

(NTP+NFP)) for the directed structure. The results showed that

PLPC is a promising approach to discover causal directions when

interactions are true. For the E. coli and S. cerevisiae datasets,

directionality accuracy is still low in comparison to the artificial

dataset, however performances are still reasonable when com-

pared to other algorithms. Note that for these two experimental

Table 1. Three DREAM5 datasets used for performance
evaluation in this study.

Dataset |TF| |Genes| |Chips|

Artificial 195 1643 805

E. coli 334 4511 805

S. cerevisiae 333 5950 536

doi:10.1371/journal.pone.0067434.t001

Table 2. AUPR and AUROC scores for all six algorithms and
one integrative analysis using three gold standard datasets
from the DREAM5 challenge.

AUPR AUROC

Algorithm Artificial E.coli
S.
cerevisiae Artificial E.coli

S.
cerevisiae

RN 0.1855 0.0129 0.0173 0.7516 0.4909 0.4998

GGM 0.0813 0.0872 0.0265 0.5883 0.5768 0.5269

Genie3 0.2837 0.0972 0.0206 0.8123 0.6200 0.5175

TIGRESS 0.3001 0.0608 0.0200 0.7602 0.5821 0.5158

CLR 0.2181 0.0804 0.0200 0.7558 0.5917 0.5129

PLPC 0.1339 0.0311 0.0179 0.5928 0.5142 0.5012

Integrative 0.2850 0.0999 0.0236 0.7910 0.6361 0.5359

Results from first best three algorithms were combined for the integrative GRN
analysis. The best AUPR and AUROC results are underlined by solid lines and the
second best ones are underlined by dotted lines in each column.
doi:10.1371/journal.pone.0067434.t002
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datasets, not all true regulatory relationships have been identified,

thus the false positives may also represent true unknown relations.

Case Study 2
In order to validate our web server on a legume dataset, we

performed a co-expression analysis to identify putative target genes

in M. truncatula of a well-studied transcription factor, ABSCISIC

ACID INSENSITIVE3 (ABI3). ABI3 is known as a master regulator

of seed maturation, which controls seed filling mechanisms and

preparation for desiccation. This gene has been intensively studied

in Arabidopsis and 78 of the ABI3 regulons have been

experimentally identified using chromatin-immunoprecipitation

(ChIP-chip), array-based transcriptome, quantitative reverse-tran-

scription-PCR (qRT-PCR) and transient promoter activation

analyses [38]. These regulons encode proteins with known

domains, which assigned them to various functions such as seed

storage proteins, late embryogenesis abundant proteins, stress

proteins, beta-glucosidases, or cytochrome P450s.

In this case study, we used the list of 1321 genes identified as

tissue specific genes in M. truncatula according to the Medicago

truncatula Gene Expression Atlas [1]. We submitted a gene network

prediction using transcriptomic data from the seed developmental

time series (i.e., 10, 12, 16, 20, 24, 36 days after pollination

samples). We selected the co-expression (relevance) network as the

analysis method using Pearson correlation coefficient with a

positive threshold of 0.9 and negative threshold of -1 to identify

putative positively regulated targets. We then submitted a

subnetwork query with the probeset Mtr.44550.1.S1_at corre-

sponding to MtABI3. From this subnetwork, we identified 44

putative regulons of MtABI3 according to our algorithm param-

eters (Table S1). Using Affymetrix probeset tentative annotation

and homology analysis with known sequences (i.e., BLASTX

against IMGAG-v3.5, Swiss-Prot and TAIR9 datasets), we

discovered protein domains and putative functions for 33 of them.

Out of these 33 genes, 69.9% (i.e., 23/33) encode proteins, whose

putative functions were shown to be regulated by ABI3 in the plant

model Arabidopsis [38] (Figure 2). Moreover, our predicted

network identified two other transcription factors as regulons of

MtABI3, FUSCA3 (FUS3) and DELAY OF GERMINATION1

(DOG1). These two genes have not yet been described as direct

targets of ABI3 but known to encode genes related to abscisic acid

physiology and may act synergistically with ABI3 to regulate an

overlapping set of targets [38,39,40].

Discussion

LegumeGRN provides one-stop services for biologists to predict

GRNs using cutting-edge algorithms, who receive results in a user-

friendly and intuitive visualization interface. Two case studies

demonstrated that this web site is promising to identify the in vivo

regulatory genetic networks.

Although our web tool is unique in allowing customization of

data input, analysis algorithms and result visualization for the

biologist with no bioinformatics training, there is still room to

improve the performance of the GRN prediction in LegumeGRN.

Even though GRN predictions on the artificial dataset (i.e., in silico

dataset from DREAM5) performed well, predictions from

microorganism or plant species datasets are less accurate

presumably due to the more complex regulatory relationships.

From the biological side, several solutions should overcome these

problems in future, such as the increase of data resources,

identification of cis-regulatory elements on promoter sequences

and mutant gene expression data from plants impaired in gene

expression. LegumeGRN web server will implement additional

experimental data as soon as they are made publicly available to

provide the latest information to biologists. From the computa-

tional side, we are interested in further improving GRN

predictions using integrative analysis. In the machine learning

field, algorithm diversity has been recognized as the key to the

success of integrative analysis methods. Previous studies [41,42]

have showed that more diversity in result prediction resulted in

higher efficiency after combining those results through an

integrative analysis. Further efforts to define the best techniques

to apply integrative analysis to GRN predictions might be

beneficial.

Supporting Information

Figure S1 The PCA plot for the major organs (flower,
leaf, nodule and root) for Medicago dataset. We selected

samples from same tissues but carried out by different labs for

these four organs and removed control probesets, then, PCA on

probesets were performed. The sample names used in PCA are:

Flower, Flower 12 wk, Leaf, Leaf GUS-ox, Leaf IRG1 R108, Nod

14 dpi, Nod 14 dpi C, Root, Root A17 control, Root watered 4d.

(PDF)

Table 3. Prediction of directionality from PLPC for three
DREAM5 datasets.

Artificial E. coli S. cerevisiae

N. of
Edges TP

N. of
Edges TP

N. of
Edges TP

PLPC 1495
(1493)

463(450) 1874
(1871)

50(50) 1687
(1679)

14(13)

For the PLPC algorithm, the numbers of predicted edges, predicted directed
edges (in parenthesis), true positives and true edges with correct directionalities
(listed in parenthesis) were listed.
doi:10.1371/journal.pone.0067434.t003

Figure 2. Venn diagram between identified ABI3 regulons [38]
and predicted regulons according to LegumeGRN co-expres-
sion analysis (RN).
doi:10.1371/journal.pone.0067434.g002
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Table S1 Predicted regulons according to co-expression
network. Predicted regulons in seed development with related

annotations, Pearson correlation coefficient values and functional

annotations according to Arabidopsis homology.

(XLS)

File S1 The description of the Parallel Low-order PC
(PLPC) algorithm. The formal pseudo codes of PLPC and

simulation tests.

(PDF)
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