2,072 research outputs found

    Environmental Air Pollutants Inhaled during Pregnancy Are Associated with Altered Cord Blood Immune Cell Profiles

    Full text link
    Air pollution exposure during pregnancy may be a risk factor for altered immune maturation in the offspring. We investigated the association between ambient air pollutants during pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon monoxide, ozone, particulate matter <10 μm (PM10) or <2.5 μm (PM2.5), humidity, and temperature. Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with linear regression were employed to define associations. Considering risk factors and correlations between PCs, only one PC from air pollutants and two from cell types were statistically significant. PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5 levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are associated with shifts in cord blood cell types that are known to play significant roles in inflammatory respiratory disease in childhoo

    Prospective memory functioning among ecstasy/polydrug users: evidence from the Cambridge Prospective Memory Test (CAMPROMPT)

    Get PDF
    Rationale: Prospective memory (PM) deficits in recreational drug users have been documented in recent years. However, the assessment of PM has largely been restricted to self-reported measures that fail to capture the distinction between event-based and time-based PM. The aim of the present study is to address this limitation. Objectives: Extending our previous research, we augmented the range laboratory measures of PM by employing the CAMPROMPT test battery to investigate the impact of illicit drug use on prospective remembering in a sample of cannabis only, ecstasy/polydrug and non-users of illicit drugs, separating event and time-based PM performance. We also administered measures of executive function and retrospective memory in order to establish whether ecstasy/polydrug deficits in PM were mediated by group differences in these processes. Results: Ecstasy/polydrug users performed significantly worse on both event and time-based prospective memory tasks in comparison to both cannabis only and non-user groups. Furthermore, it was found that across the whole sample, better retrospective memory and executive functioning was associated with superior PM performance. Nevertheless, this association did not mediate the drug-related effects that were observed. Consistent with our previous study, recreational use of cocaine was linked to PM deficits. Conclusions: PM deficits have again been found among ecstasy/polydrug users, which appear to be unrelated to group differences in executive function and retrospective memory. However, the possibility that these are attributable to cocaine use cannot be excluded

    Cord blood group 2 innate lymphoid cells are associated with lung function at 6 weeks of age.

    Full text link
    Objective: Offspring born to mothers with asthma in pregnancy are known to have lower lung function which tracks with age. Human group 2 innate lymphoid cells (ILC2) accumulate in foetal lungs, at 10-fold higher levels compared to adult lungs. However, there are no data on foetal ILC2 numbers and the association with respiratory health outcomes such as lung function in early life. We aimed to investigate cord blood immune cell populations from babies born to mothers with asthma in pregnancy. Methods: Cord blood from babies born to asthmatic mothers was collected, and cells were stained in whole cord blood. Analyses were done using traditional gating approaches and computational methodologies (t-distributed stochastic neighbour embedding and PhenoGraph algorithms). At 6 weeks of age, the time to peak tidal expiratory flow as a percentage of total expiratory flow time (tPTEF/tE%) was determined as well as Lung Clearance Index (LCI), during quiet natural sleep. Results: Of 110 eligible infants (March 2017 to November 2019), 91 were successfully immunophenotyped (82.7%). Lung function was attempted in 61 infants (67.0%), and 43 of those infants (70.5% of attempted) had technically acceptable tPTEF/tE% measurements. Thirty-four infants (55.7% of attempted) had acceptable LCI measurements. Foetal ILC2 numbers with increased expression of chemoattractant receptor-homologous molecule (CRTh2), characterised by two distinct analysis methodologies, were associated with poorer infant lung function at 6 weeks of age." Conclusion: Foetal immune responses may be a surrogate variable for or directly influence lung function outcomes in early life

    Fuel Conditions Associated with Native and Exotic Grasses in a Subtropical Dry Forest in Puerto Rico

    Get PDF
    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of native grasses in contributing to fuel loads in dry forest has received little attention. We assessed differences in fuel conditions among native and exotic grasses within a subtropical dry forest preserve in Puerto Rico. We quantified fine fuel loads, fuel continuity, and seasonal changes in percent dead grass among the following grass patch types: (1) native grass with no known history of recent fire, (2) exotic grass that had burned once (single burn), and (3) exotic grass that burns frequently. Sampling was conducted during one wet season (August to October 2008) and again in the following dry season (February to March 2009). Overall, fine fuel loading was highest in native grass, but this was due to woody fuels rather than grass fuels. Percent of dead grass fuels increased with the transition from wet to dry season, and this increase was more pronounced for exotic grasses. Fuel continuity was highest in frequently burned exotic grass. Differences in grass phenology and fuel continuity may contribute to differences in fire frequency among native and exotic grass patches. Fuel management focused on prescribed fire should be used in conjunction with restoration of tree canopy to reduce fuels and limit development of a grass-fire cycle

    Improving the use of research evidence in guideline development: 5. Group processes

    Get PDF
    BACKGROUND: The World Health Organization (WHO), like many other organisations around the world, has recognised the need to use more rigorous processes to ensure that health care recommendations are informed by the best available research evidence. This is the fifth of a series of 16 reviews that have been prepared as background for advice from the WHO Advisory Committee on Health Research to WHO on how to achieve this. OBJECTIVE: In this review we address approaches to facilitate sound processes within groups that develop recommendations for health care. METHODS: We searched PubMed and three databases of methodological studies for existing systematic reviews and relevant methodological research. We did not conduct systematic reviews ourselves. Our conclusions are based on the available evidence, consideration of what WHO and other organisations are doing and logical arguments. KEY QUESTION AND ANSWER: What should WHO do to ensure appropriate group processes? Various strategies can be adopted to ensure that the group processes in play when panels are developing recommendations are inclusive, so that all voices can be heard and all arguments given fair weight, including • the use of formal consensus development methods, such at the Nominal Group Technique or the Delphi method • the selection of a group leader who is qualified and responsible for facilitating an appropriate group process

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Application of adaptive design and decision making to a phase II trial of a phosphodiesterase inhibitor for the treatment of intermittent claudication

    Get PDF
    Background: Claudication secondary to peripheral artery disease (PAD) is associated with substantial functional impairment. Phosphodiesterase (PDE) inhibitors have been shown to increase walking performance in these patients. K-134 is a selective PDE 3 inhibitor being developed as a potential treatment for claudication. The use of K-134, as with other PDE 3 inhibitors, in patients with PAD raises important safety and tolerability concerns, including the induction of cardiac ischemia, tachycardia, and hypotension. We describe the design, oversight, and implementation of an adaptive, phase II, dose-finding trial evaluating K-134 for the treatment of stable, intermittent claudication. Methods: The study design was a double-blind, multi-dose (25 mg, 50 mg, and 100 mg of K-134), randomized trial with both placebo and active comparator arms conducted in the United States and Russia. The primary objective of the study was to compare the highest tolerable dose of K-134 versus placebo using peak walking time after 26 weeks of therapy as the primary outcome. Study visits with intensive safety assessments were included early in the study period to provide data for adaptive decision making. The trial used an adaptive, dose-finding strategy to efficiently identify the highest dose(s) most likely to be safe and well tolerated, based on the side effect profiles observed within the trial, so that less promising doses could be abandoned. Protocol specified criteria for safety and tolerability endpoints were used and modeled prior to the adaptive decision making. The maximum target sample size was 85 subjects in each of the retained treatment arms. Results: When 199 subjects had been randomized and 28-day data were available from 143, the Data Monitoring Committee (DMC) recommended termination of the lowest dose (25 mg) treatment arm. Safety evaluations performed during 14- and 28-day visits which included in-clinic dosing and assessments at peak drug concentrations provided core data for the DMC review. At the time of review, no subject in any of the five treatment arms (placebo, three K-134-containing arms, and cilostazol) had met pre-specified definitions for resting tachycardia or ischemic changes on exercise ECG. If, instead of dropping the 25-mg K-134 treatment arm, all arms had been continued to full enrollment, then approximately 43 additional research subjects would have been required to complete the trial. Conclusions: In this phase II, dose-finding trial of K-134 in the treatment of stable intermittent claudication, no concerning safety signals were seen at interim analysis, allowing the discontinuation of the lowest-dose-containing arm and the retention of the two highest-dose-containing arms. The adaptive design facilitated safe and efficient evaluation of K-134 in this high-risk cardiovascular population

    Resident Memory T Cells (TRM) Are Abundant in Human Lung: Diversity, Function, and Antigen Specificity

    Get PDF
    Recent studies have shown that tissue resident memory T cells (TRM) are critical to antiviral host defense in peripheral tissues. This new appreciation of TRM that reside in epithelial tissues and mediate host defense has been studied most extensively in skin: adult human skin contains large numbers of functional TRM that express skin specific markers. Indeed, more than twice as many T cells reside in skin as in peripheral blood. This T cell population has a diverse T cell receptor repertoire, and can produce a broad array of cytokines. More recently, we have begun to examine other epithelial tissues for the presence of resident T cells. In the present study, we asked whether analogous populations of resident T cells could be found in human lung. We were able to demonstrate abundant resident T cells in human lung-more than 10 billion T cells were present. Lung T cells were largely of the effector memory T cell (TEM) phenotype, though small numbers of central memory T cells (TCM) and T regulatory cells (Treg) could be identified. Lung T cells had a diverse T cell receptor repertoire and subsets produced IL-17, IL-4, IFNγ, as well as TNFα. A significant number of lung TRM CD4+Th cells produced more than one cytokine, identifying them as “multifunctional” Th1 type cells. Finally, lung TRM, but not TRM resident to skin or T cells from blood, proliferated in response to influenza virus. This work suggests that normal human lung contains large numbers of TRM cells, and these cells are poised to respond to recall antigens previously encountered through lung mucosa. This population of T cells may contribute to the pathogenesis of asthma and other T cell mediated lung diseases
    corecore