42 research outputs found

    Moderate exercise increases affinity of large very low density lipoproteins for hydrolysis by lipoprotein lipase

    Get PDF
    Context: Postprandial triglyceride (TG) concentration is independently associated with cardiovascular disease risk. Exercise reduces postprandial TG concentrations but the mechanisms responsible are unclear. Objective: To determine the effects of exercise on affinity of chylomicrons, large very low density lipoproteins (VLDL1) and smaller VLDL (VLDL2) for lipoprotein lipase (LPL) mediated TG hydrolysis. Design: Within-participant cross-over study. Setting: A University metabolic investigation unit. Participants: Ten overweight/obese men. Interventions: Participants undertook two oral fat tolerance tests, separated by 7–14 days, in which they had blood taken fasting and for 4 hours after a high-fat mixed meal. On the afternoon before one test, they performed a 90-minute treadmill walk at 50% maximal oxygen uptake (EX); no exercise was performed before the control test (CON). Main outcome measures: Circulating TG-rich lipoprotein concentrations; affinity of chylomicrons, VLDL1, VLDL2 for LPL-mediated TG hydrolysis. Results: Exercise significantly reduced fasting VLDL1-TG concentration (CON: 0.49(0.33–0.72) mmol.l−1, EX: 0.36(0.22–0.59) mmol.l−1, [geometric means (95% confidence interval)]; p=0.04). Time-averaged postprandial chylomicron-TG (CON: 0.55±0.10 mmol.l−1, EX: 0.39±0.08 mmol.l−1, [mean±SEM], p=0.03) and VLDL1-TG (CON: 0.85±0.13 mmol.l−1, EX: 0.66±0.10 mmol.l−1, p=0.01) concentrations were both lower in EX than CON. Affinity of VLDL1 for LPL-mediated TG hydrolysis increased by 2.2(1.3–3.7) fold (geometric mean (95% confidence interval)) (p=0.02) in the fasted state and 2.6(1.8–2.6) fold (p=0.001) postprandially. Affinity of chylomicrons and VLDL2 was not significantly different between trials. Conclusions: Exercise increases affinity of VLDL1 for LPL-mediated TG hydrolysis both fasting and postprandially. This mechanism is likely to contribute to exercise's TG-lowering effect

    Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: a cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis

    Get PDF
    Objectives Patients with rheumatoid arthritis (RA) have reduced serum low-density lipoprotein cholesterol (LDL-c), which increases following therapeutic IL-6 blockade. We aimed to define the metabolic pathways underlying these lipid changes. Methods In the KALIBRA study, lipoprotein kinetic studies were performed on 11 patients with severe active RA at baseline and following three intravenous infusions of the IL-6R blocker tocilizumab. The primary outcome measure was the fractional catabolic rate (FCR) of LDL. Results Serum total cholesterol (4.8 vs 5.7 mmol/L, p=0.003), LDL-c (2.9 vs 3.4 mmol/L, p=0.014) and high-density lipoprotein cholesterol (1.23 vs 1.52 mmol/L, p=0.006) increased following tocilizumab therapy. The LDL FCR fell from a state of hypercatabolism to a value approximating that of the normal population (0.53 vs 0.27 pools/day, p=0.006). Changes in FCR correlated tightly with changes in serum LDL-c and C-reactive protein but not Clinical Disease Activity Index. Conclusions Patients with RA have low serum LDL-c due to hypercatabolism of LDL particles. IL-6 blockade normalises this catabolism in a manner associating with the acute phase response (and thus hepatic IL-6 signalling) but not with RA disease activity as measured clinically. We demonstrate that IL-6 is one of the key drivers of inflammation-driven dyslipidaemia

    Lipoprotein-associated phospholipase A 2 , platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease

    Get PDF
    Abstract A specific and robust immunoassay for the lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ), platelet-activating factor acetylhydrolase, is described for the first time. The immunoassay was used to evaluate possible links between plasma Lp-PLA 2 levels and atherosclerosis risk amongst susceptible individuals. Such an investigation was important because Lp-PLA 2 participates in the oxidative modification of low density lipoprotein by cleaving oxidised phosphatidylcholines, generating lysophosphatidylcholine and oxidised free fatty acids. The majority of Lp-PLA 2 was found associated with LDL (approximately 80%) and, as expected, enzyme levels were significantly positively correlated to LDL cholesterol. Plasma Lp-PLA 2 levels were significantly elevated in patients with angiographically proven coronary artery disease (CAD) when compared with age-matched controls, even though LDL cholesterol levels did not differ significantly. Indeed, when included in a general linear model with LDL cholesterol and other risk factors, Lp-PLA 2 appeared to be an independent predictor of disease status. We propose, therefore, that plasma Lp-PLA 2 mass should be viewed as a potential novel risk factor for CAD that provides information related to but additional to traditional lipoprotein measurements

    Replication of LDL SWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses

    Get PDF
    <p><b>Background:</b> The PHArmacogenetic study of Statins in the Elderly at risk (PHASE) is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER) that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER/PHASE project and second show that the PROSPER/PHASE study can be used to study pharmacogenetics in the elderly.</p> <p><b>Methods:</b> The genome wide association study (GWAS) was conducted using the Illumina 660K-Quad beadchips following manufacturer's instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification.</p> <p><b>Results:</b> Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE/APOC1; LDLR; FADS2/FEN1; HMGCR; PSRC1/CELSR5). The top SNP (rs445925, chromosome 19) with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19) with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results.</p> <p><b>Conclusion:</b> With the GWAS in the PROSPER/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof-of-principle study we show that the PROSPER/PHASE study can be used to investigate genetic associations in a similar way to population based studies. The next step of the PROSPER/PHASE study is to identify the genetic variation responsible for the variation in LDL-cholesterol lowering in response to statin treatment in collaboration with other large trials.</p&gt

    Relationship between circulating microRNA-30c with total- and LDL-cholesterol, their circulatory transportation and effect of statins

    Get PDF
    Background: Small non-coding microRNAs (miR) have important regulatory roles and are used as biomarkers of disease. We investigated the relationship between lipoproteins and circulating miR-30c, evaluated how they are transported in circulation and determined whether statins altered the circulating concentration of miR-30c. Methods: To determine the relationship between lipoproteins and circulating miR-30c, serum samples from 79 subjects recruited from a lipid clinic were evaluated. Ultracentrifugation and nanoparticle tracking analysis was used to evaluate the transportation of miR-30c in the circulation by lipoproteins and extracellular vesicles in three healthy volunteers. Using archived samples from previous studies, the effects of 40 mg rosuvastatin (n = 22) and 40 mg pravastatin (n = 24) on miR-30c expression was also examined. RNA extraction, reverse transcription-quantitative real-time polymerase chain reaction was carried out using standard procedures. Results: When stratified according to total cholesterol concentration, there was increased miR-30c expression in the highest compared to the lowest tertile (p = 0.035). There was significant positive correlation between miR- 30c and total- (r = 0.367; p = 0.002) and LDL-cholesterol (r = 0.391; p = 0.001). We found that miR-30c was transported in both exosomes and on HDL3. There was a 3.8-fold increased expression of circulating miR-30c after pravastatin treatment for 1 year (p = 0.005) but no significant change with atorvastatin after 8 weeks (p = 0.145). Conclusions: This study shows for the first-time in humans that circulating miR-30c is significantly, positively correlated with total- and LDL-cholesterol implicating regulatory functions in lipid homeostasis. We show miR-30c is transported in both exosomes and on HDL3 and pravastatin therapy significantly increased circulating miR-30c expression adding to the pleiotropic dimensions of statins

    High-Sensitivity Cardiac Troponin, Statin Therapy, and Risk of Coronary Heart Disease

    Get PDF
    Objectives: This study sought to determine whether troponin concentration could predict coronary events, be modified by statins, and reflect response to therapy in a primary prevention population. Methods: WOSCOPS (West of Scotland Coronary Prevention Study) randomized men with raised low-density lipoprotein cholesterol and no history of myocardial infarction to pravastatin 40 mg once daily or placebo for 5 years. Plasma cardiac troponin I concentration was measured with a high-sensitivity assay at baseline and at 1 year in 3,318 participants. Results: Baseline troponin was an independent predictor of myocardial infarction or death from coronary heart disease (hazard ratio [HR]: 2.3; 95% confidence interval [CI]: 1.4 to 3.7) for the highest (≥5.2 ng/l) versus lowest (≤3.1 ng/l) quarter of troponin (p < 0.001). There was a 5-fold greater reduction in coronary events when troponin concentrations decreased by more than a quarter, rather than increased by more than a quarter, for both placebo (HR: 0.29; 95% CI: 0.12 to 0.72 vs. HR: 1.95; 95% CI: 1.09 to 3.49; p < 0.001 for trend) and pravastatin (HR: 0.23; 95% CI: 0.10 to 0.53 vs. HR: 1.08; 95% CI: 0.53 to 2.21; p < 0.001 for trend). Pravastatin reduced troponin concentration by 13% (10% to 15%; placebo adjusted, p < 0.001) and doubled the number of men whose troponin fell more than a quarter (p < 0.001), which identified them as having the lowest risk for future coronary events (1.4% over 5 years). Conclusions: Troponin concentration predicts coronary events, is reduced by statin therapy, and change at 1 year is associated with future coronary risk independent of cholesterol lowering. Serial troponin measurements have major potential to assess cardiovascular risk and monitor the impact of therapeutic interventions

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    The association of circulating microRNA-30c with atherogenic lipoprotein subfractions and composition

    No full text
    Circulating miR-30c has been linked to various aspects of cholesterol homeostasis. The aim of this study was to determine the association of circulating miR-30c with the atherogenic lipoprotein subfractions. Samples from subjects who were given placebo (n = 22) in a randomised, double-blind crossover study were used. Subjects were divided into non-atherogenic lipoprotein phenotype (Non-ALP; n = 12; triglycerides < 2.0 mmol/L) and atherogenic lipoprotein phenotype (ALP; n = 10; triglycerides ≥ 2.0 mmol/L) groups. All lipid and lipoprotein measurements, RNA extraction and reverse transcription-quantitative real-time polymerase chain reaction were undertaken using standard procedures. Subjects with ALP weighed significantly more than their non-ALP counterparts (p = 0.023). In the non-ALP group there was significant correlation between miR-30c and components within VLDL1, namely triglyceride which showed a negative association (p = 0.035) whereas phospholipids and cholesterol-ester were both positively correlated (p = 0.025 and 0.014, respectively). In contrast, in the ALP group there was a significant correlation between the expression of miR-30c and components within VLDL2, namely triglyceride, which was positively associated (p = 0.013). This study reveals specificity with regards to the effect of miR-30c on VLDL subfractions based on the individual's lipoprotein phenotype and implicates roles for microsomal-triglyceride transfer-protein and cholesteryl-ester-transfer-protein in LDL and VLDL metabolism, respectively
    corecore