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Abstract 1 

Background: Although a large number of randomized controlled trials (RCTs) have 2 

examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood 3 

pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d, 4 

which are unlikely to be achieved by diet manipulation.  5 

Objective: The objective was to examine, using a retrospective analysis from a multi-center 6 

RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and 7 

diastolic blood pressure and microvascular function in UK adults.  8 

Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled 9 

RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random 10 

order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler 11 

Iontophoresis) were assessed and plasma collected for the quantification of markers of 12 

vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 13 

variant. 14 

Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions 15 

were evident in the group as a whole for any of the clinical or biochemical outcomes. 16 

Assessment of response according to hypertension status at baseline indicated a significant 17 

(P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically 18 

in those with isolated systolic hypertension (n=31). No dose response was observed. 19 

Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily 20 

doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure 21 

reductions which, at a population level, would be associated with lower cardiovascular 22 

disease risk. Confirmation of findings in an RCT where participants are prospectively 23 

recruited on the basis of blood pressure status is required to draw definite conclusions. 24 

 25 
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Introduction 30 

Current dietary guidelines, predominantly informed  by prospective epidemiological evidence 31 

(1, 2), typically recommend a minimum intake of the marine n-3 (ω-3) fatty acids EPA 32 

(C20:5n-3) and DHA (C22:6n-3) of 0.5 g per d for healthy individuals, increasing to 1 g per d 33 

for those with diagnosed cardiovascular disease (CVD) (3, 4). The majority of published 34 

randomized controlled trials (RCTs) establishing the efficacy of EPA+DHA on 35 

cardiovascular risk factors have used daily doses of greater than 3 g per d. Such intakes 36 

cannot be achieved through diet manipulation and require use of concentrated or 37 

pharmaceutical grade supplements. Meta-analyses or systematic reviews of available RCTs 38 

indicate that such high dose (> 3 g EPA+DHA per d) n-3 fatty acid supplementation reduces 39 

systolic and diastolic blood pressure (SBP and DBP) by approximately 2-4 mmHg and 1-3 40 

mmHg, respectively (5-8) with hypertensive individuals being most responsive (5, 7). Less 41 

well explored is the impact of intakes of EPA+DHA up to 2 g per d, and in particular in the 42 

0.5 to 1.0 g per d range (commonly recommended minimum intakes), which can be achieved 43 

through the diet by consuming oily fish (9), on established CVD risk factors such as blood 44 

pressure. 45 

Loss of normal vascular function has an etiological role in hypertension and atherogenesis, 46 

and vascular reactivity of both the coronary and peripheral arteries is highly prognostic of 47 

future clinical events (10). The limited data available from adequately powered RCTs provide 48 

inconsistent evidence to indicate whether EPA+DHA can improve arterial vascular reactivity 49 

and stiffness (11, 12). While some more recent trials have used daily intervention doses in the 50 

1.5-3.0 g EPA+DHA range (12-14), the impact of lower intakes on vascular tone and overall 51 

function is poorly understood. Furthermore, the trials with vascular primary end-points have 52 

been conducted mainly in diabetic or hyperlipidemic subjects. Although at the whole 53 

population level the impact of lower intakes of EPA+DHA on blood pressure and vascular 54 
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functions may be modest, clinically relevant changes may occur in more responsive 55 

population sub-groups. Such sub-groups could be specifically targeted to increase their 56 

EPA+DHA intake in order to gain a health benefit. Here we report the impact of modest n-3 57 

fatty acid doses (0.7 and 1.8 g of EPA+DHA per d) on blood pressure and vascular function 58 

in healthy adults and investigate the influence of sex, baseline EPA+DHA and hypertensive 59 

status, and endothelial nitric oxide synthase (eNOS) genotype on response to n-3 fatty acid 60 

treatment. We focused on the eNOSGlu298Asp polymorphism (rs1799983) because of its 61 

reported impact on vascular function and cardiovascular risk (15) along with a previous 62 

observation of an influence of this variant on the association between vasodilation and plasma 63 

EPA+DHA concentrations (16), and more recently the acute vasodilatory response to 64 

EPA+DHA intake (17). 65 

 66 

Methods  67 

Subjects and Study Design   68 

The aim of the FINGEN Study (Glasgow, Newcastle, Reading and Southampton 69 

Universities) was to investigate the responsiveness of a range of established and putative 70 

markers of CVD risk to modest dose fish oil intervention. Participants were prospectively 71 

recruited on the basis of apo E (APOE) genotype, sex and age to ensure equal numbers of 72 

APOE2 and APOE4 carriers and APOE3/E3 homozygotes, males and females and spread of 73 

age across the five decades 20-70 y. This stratification was undertaken to provide sufficient 74 

group size and hence power to establish the impact of these variables on response to 75 

treatment. Details of the study design and subject characteristics have been published (18). In 76 

brief, healthy subjects (n = 364, aged 18-70 y, BMI 18.5 to 30 kg/m2) were recruited 77 

according to defined inclusion/exclusion criteria (see Supplemental Methods). Blood 78 

pressure elevation or anti-hypertensive medication use was not an exclusion criterion. The 79 
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study was approved by the local research ethics committees and all subjects provided 80 

informed written consent prior to participation (18). The trial adhered to the principles of the 81 

Declaration of Helsinki. 82 

 83 

Intervention 84 

The study was a double-blind placebo-controlled, dose-response, cross-over study, consisting 85 

of 3 intervention arms each of 8-wk duration. A wash-out period of 12-wk was observed 86 

between intervention arms (18). During the intervention periods participants consumed in 87 

random order, either 3.2 g of the control oil (CO), 3.2 g fish oil (FO) providing 1.8 g 88 

EPA+DHA/d (1.8FO) or a 50:50 CO:FO blend providing 0.7 g EPA+DHA/d (0.7FO). The 89 

CO was an 80:20 mixture of palm oil and soybean oil. The ratio of DHA to EPA in the FO 90 

was 1.4, which approximates the ratio found in marine sources and therefore in the habitual 91 

diet (19, 20). Additionally, participants consumed a low fat meal (< 10 g fat) the evening 92 

before each assessment visit. 93 

 94 

Blood Pressure and Vascular Measurements 95 

Blood pressure (BP) measurements were taken at rest (≥ 5 min) on the non-dominant arm, 96 

which was elevated to heart level, using an automated BP device (Omron Model 705IT, 97 

Milton Keynes, UK). After measuring the upper arm circumference, an appropriately sized 98 

cuff (pneumatic bag 20% wider than the upper arm circumference) was used. Blood pressure 99 

measurements were taken until two consecutive readings were within 10 mmHg for both 100 

systolic BP (SBP) and diastolic BP (DBP). The average of these two stable readings was used 101 

for data analysis. Measurements were performed by fully trained research staff, in accordance 102 

with a multi-center accepted standard operating procedure.   103 
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At two of the intervention sites, Reading and Glasgow (n=177), the vascular reactivity of the 104 

cutaneous microvasculature on the volar aspect of the forearm was determined by Laser 105 

Doppler Iontophoresis (LDI) (21). As vascular reactivity is dependent on ambient 106 

temperature and activity levels, all participants were acclimatized at rest in a temperature 107 

controlled room for 30 minutes prior to LDI assessment. Sodium nitroprusside (SNP, 1% 108 

solution) and acetylcholine (ACh, 1% solution) were used as endothelial independent and 109 

dependent vasodilators, respectively. SNP and ACh were applied to the iontophoresis 110 

chambers on the forearm and delivered transdermally using an incremental current 0-20 μA. 111 

The response of the dermal circulation was measured by Laser Doppler imaging (Moor 112 

Instrument Ltd, Axminster, UK), whereby a backscattered light which experiences a Doppler 113 

shift imparted by moving red cells in the underlying circulation was collected in a series of 20 114 

scans and used to determine blood flow. Results are expressed as area under the curve (AUC) 115 

or incremental AUC (IAUC) of the 20 scans recorded or flux according to cumulative charge. 116 

 117 

Biochemical Analysis and Genotyping 118 

Fasting blood was drawn into lithium heparin for assessment of NO availability, endothelin-1 119 

(ET-1), adhesion molecules and phosphatidylcholine (PC) fatty acids, with plasma stored in 120 

individual vials at -80°C. NO and ET-1 are key endothelial-derived vasodilatory and 121 

vasoconstrictive agents, respectively (22, 23). NO is labile and cannot be quantified directly; 122 

therefore plasma levels of nitrite+nitrate, which serve as a biomarker of NO availability, 123 

where determined. Total plasma nitrite+nitrate was measured using a commercial kit (R&D 124 

Systems Europe, Abingdon, UK). ET-1 concentrations were analyzed using a Quantiglow 125 

human ET-1 immunoassay kit (R&D Systems Europe, Abingdon, UK). The soluble adhesion 126 

molecules quantified using ELISA, included vascular cell adhesion molecule-1 (VCAM-1), 127 

intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-selectin (all kits sourced from 128 
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BioSource Europe, Nivelles, Belgium). These molecules, expressed on the surface of 129 

endothelial cells, modulate leukocyte recruitment into the sub-endothelial space and 130 

contribute to a pro-inflammatory state and overall vascular dysfunction (24). The fatty acid 131 

composition of the plasma PC fraction was determined using previously described methods 132 

(25), with lipid extraction, PC isolation using solid phase extraction, transmethylation and 133 

methyl ester separation by gas phase chromatography being the principal steps involved. 134 

eNOS genotype (rs1799983) was determined using a TaqMan (Assay-on-demand) SNP 135 

Genotyping kit (Applied Biosystems, Warrington, UK). 136 

 137 

Statistical Analysis 138 

A repeated-measures analysis was performed to test for a treatment effect, with baseline 139 

values and period (order of intervention) as covariates. Participants were treated as fixed 140 

effects, as the use of random effect models introduces the potential for cross-level bias (26). 141 

No treatment carry-over effect was evident. Subgroup responses according to sex, eNOS 142 

genotype, and tertile of baseline EPA+DHA status were tested by including an interaction 143 

term between the group and treatment in the model. For the main vascular and blood pressure 144 

measures, an additional analysis was conducted in normotensives (NT) vs. hypertensives 145 

((HT); SBP and DBP of ≥ 140 and/or ≥ 90 mmHg) and normotensives vs. dual HTs ((DHT); 146 

SBP and DBP of  ≥ 140 and ≥ 90 mmHg) vs. isolated systolic hypertensives ((SHT); SBP ≥ 147 

140 and DPB < 90 mmHg)(27). The current analysis represented a retrospective secondary 148 

analysis of the FINGEN cohort, with the primary study end-point, and the basis of the 149 

original power calculations, being plasma triglycerides and LDL-cholesterol. The inclusion of 150 

312 subjects in a cross-over design, provided > 99% power to detect a 6 mmHg reduction in 151 

SBP and a 4 mmHg reduction in DBP between any two treatments in the group as a whole. 152 
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All analyses were conducted using SAS Version 9.1 (Cary, US) and SPSS Version 15 153 

(Chicago, US), and P<0.05 was considered to indicate statistical significance. 154 

 155 

Results 156 

A total of 312 subjects, including 163 females and 149 males, completed the study (the 157 

CONSORT flow diagram is Supplemental Figure 1 (18)). They had a mean ± SD age of 158 

45.0 ± 13.0 years and BMI of 25.2 ±  3.4 kg/m2, and 6% of subjects were taking anti-159 

hypertensive medication. 160 

Expressed as absolute % of total fatty acids relative to the control oil, 0.7FO and 1.8FO 161 

increased plasma PC EPA by 1.3 and 2.2 respectively, with increases of 2.1 and 2.5 for DHA 162 

(Table 1, all P<0.001). As we have reported previously (18), a significant sex * treatment 163 

interaction was evident with greater enrichment of PC EPA+DHA in females than in males, 164 

possibly attributable to the higher n-3 fatty acid dose per unit body weight. 165 

 For the participants as a whole, the intervention had no effect on BP, vascular function or 166 

any of the biochemical measures included and there was no evidence of any sex * treatment 167 

or baseline EPA+DHA status * treatment interactions (Table 1).  168 

However, a total of 48 subjects were classified as HT; of these 17 were classified as DHT and 169 

31 as SHT (27).  HTs were older and had higher BMI than NTs (both P<0.001) (Table 2). 170 

Mean ± SD baseline SBP and DBP (mmHg) of 118.6 ± 14.0 and 73.0 ± 8.5, 156.8 ± 19.1 and 171 

98.4 ± 10.0, and 145.8 ± 10.5 and 81.1 ±  5.4 were found in NTs, DHTs and SHTs, 172 

respectively. A significant treatment * hypertension status interaction was observed (P=0.022) 173 

with a significant reduction in blood pressure following intervention only for those with SHT 174 

(Figure 1a). Relative to CO, 0.7FO and 1.8FO resulted in a mean (95% CI) difference of -175 

5.20 (-9.23, -1.18) and -5.31 (-9.45, -1.18) mmHg in SBP respectively, with no significant 176 
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differences between the treatment groups and no treatment * BP status interaction evident for 177 

DBP. 178 

HT status was also associated with a differential DHA response (Figure 1b) (P=0.044) with 179 

evidence of greater increases in the SHT group. Older age has been associated with greater n-180 

3 fatty acid accumulation following supplementation (28), so that the greater DHA response 181 

in HTs may reflect the fact that HTs were on average a decade older than the NT group. 182 

eNOS genotypic distributions were in Hardy-Weinberg equilibrium with the frequency of 183 

Glu298Glu (48%), Glu298Asp (42%), Asp298Asp (10%) being similar to that observed in 184 

previous studies in Caucasians (16, 29). eNOS genotype was not a significant determinant of 185 

BP or vascular measures or of their response to EPA+DHA intervention (Table 3). 186 

 187 

Discussion 188 

Our main finding is that intakes of EPA+DHA achievable through the consumption of two to 189 

three portions of oily fish per wk, or two fish oil capsules per d, reduced SBP by 5 mmHg in 190 

those with SHT. Such BP reduction would be associated with an approximate 20% reduction 191 

in CVD risk in middle age (30).  192 

In the UK and the US about 30% of adults have high blood pressure (defined as being 193 

hypertensive or being treated with anti-hypertensive medications) (31, 32). In those without 194 

relevant co-morbidities the threshold for drug treatment is a sustained SBP ≥ 160 mmHg 195 

and/or a DBP ≥ 100 mg Hg (33). As a result, in the UK, about half of male and a third of 196 

female hypertensives remain untreated despite compelling evidence of continuous 197 

associations between usual blood-pressure values down to 115 mmHg (systolic) and 75 198 

mmHg (diastolic) and the risks of major cardiovascular diseases (34). Our data suggest that 199 

increased long chain n-3 PUFA intakes (of only 0.7 g per d, providing approximately 0.3 g 200 
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EPA and 0.4 g of DHA) may be an effective strategy for BP control in this large population 201 

subgroup.  202 

The size effect from supplementation with n-3 fatty acids (5 mmHg) is largely consistent with 203 

that reported in previous meta-analyses with Morris et al. (8), Appel et al. (35), Geleijnse et 204 

al. (6) and Miller et al. (7) observing reductions of SBP in hypertensives of 3.4, 5.5, 4.0, and 205 

4.5 mmHg, respectively. However, importantly, the current RCT used daily intakes of 206 

EPA+DHA which were 40-90% lower than the mean/median intakes of studies reported in 207 

these meta-analyses (3-5 g EPA+DHA per d), indicating that in SHT individuals lower doses 208 

are sufficient to induce a substantial benefit. In the most recent meta-analysis of Miller et al. 209 

(7) which included 70 RCTs with a mean EPA+DHA dose of 3.8 g per d, twenty studies used 210 

doses of fish oil which provided < 2 g EPA+DHA per d. Of these, only two examined 211 

response to treatment in hypertensive subjects (36, 37). Although both these studies reported 212 

no significant impact on SBP, mean reductions of 5 mmHg were evident in both and it seems 213 

likely that a lack of significance in these two previous studies was due to a lack of power, 214 

rather than lack of a real biological impact (these studies had 17 (36) and 23 (37) individuals 215 

in the fish oil groups, respectively).  216 

It is possible that the high DHA: EPA ratio in the supplement may have contributed to the 217 

relatively large effect size in the current study. Previous RCTs which compared the anti-218 

hypertensive action of EPA vs DHA rich supplements indicated a greater effect of the latter 219 

(38, 39). For example in overweight men supplemented for 6 wk, 4 g of DHA per d, but not 220 

EPA, reduced 24 h and d time ambulatory blood pressure (39). Also, consistent with a lack of 221 

dose response previously reported (5, 7) we observed a similar 5 mmHg reduction in SBP 222 

following both n-3 fatty acid supplementation doses, which may indicate that the maximum 223 

physiological impact is already achieved at the lower intake (0.7 g EPA+DHA per d). 224 

Alternatively, the lack of dose response may reflect the only modestly higher plasma DHA 225 
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status achieved at the higher level of supplementation, despite a more than doubling of intake, 226 

with 42% and 58% increased plasma DHA following the 0.7FO and 1.8FO, respectively. This 227 

lack of accrual at higher doses may be attributable to the known increase in β-oxidation of 228 

DHA at higher intakes (40).  229 

The anti-hypertensive effects of EPA and DHA are likely to be due to multiple mechanisms 230 

and to include impacts on heart rate and cardiac output along with improved endothelial and 231 

overall vascular function (14, 41-44). Previously reported mechanisms underlying the 232 

vascular effects, include an increased production of EPA and DHA derived vasoactive 233 

eicosanoids and epoxides, enhanced bioavailability of nitric oxide, and reduced adhesion 234 

molecule expression associated with improved inflammatory status (25, 43, 45, 46). No 235 

impact of treatment on plasma adhesion molecule concentrations was evident in the current 236 

study which is consistent with what has been seen in several other studies using modest doses 237 

of EPA+DHA (46, 47) so that the efficacy of the supplement used in our study is unlikely to 238 

be mediated by changes in adhesion molecule expression in the endothelium.  239 

Furthermore no impact of treatment on (micro) vascular function as determined by LDI was 240 

evident. The cutaneous vasculature represents an accessible and representative vascular bed 241 

for the establishment of treatment effects on vascular function and specifically NO mediated 242 

vasodilation (48). Although an impact of fish oil supplementation on postprandial 243 

microvascular reactivity has been demonstrated by us and others (14, 17, 49), consistent with 244 

the findings of Stirban et al. (14) and Skulas-Ray et al. (50), no effect of chronic EPA+DHA 245 

supplementation on fasting vasodilation was evident in the current study. However, this does 246 

not preclude an impact of treatment on macrovascular function. Large conduit artery (e.g. 247 

aorta) stiffening, associated with elastin fragmentation and neuro-hormonal alterations in the 248 

vascular wall, and the wave-reflection phenomenon, have been identified as being the most 249 

important pathophysiological determinants of age-related increases in SHT and pulse 250 
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pressure (51, 52). Carotid-femoral artery pulse wave velocity (cf-PWV), which increases with 251 

increasing stiffness is the gold standard measure of arterial stiffness. In a 2011 meta-analysis, 252 

Pase et al. (41) showed an overall beneficial impact of EPA+DHA on PWV which has been 253 

confirmed in more recent RCTs (42). The impact of modest (< 2 g per d) EPA+DHA intakes 254 

on large artery compliance and stiffness in those with SHT is unknown and further 255 

exploration of this is merited. 256 

Finally, in contrast with a single previous observational study (16) and with an intervention 257 

trial (17), we observed no impact of the eNOS rs1799983 genotype on vascular or NO 258 

responses. This gene variant, which alters the amino acid at position 298 in the mature 259 

protein (Glu298Asp), has been shown to increase protein cleavage with consequent 260 

inactivation of eNOS (53), and to be associated with reduced circulating NO levels, vascular 261 

reactivity and CVD incidence (15). Lesson et al. (16) observed that this genotype influenced 262 

the association between plasma EPA+DHA status and flow-mediated brachial artery 263 

dilatation (FMD), with a significant association in 298Asp carriers but not in Glu298Glu 264 

homozygotes. Using a prospective recruitment according to eNOS genotype approach, 265 

Thompson and co-workers (17) reported a 2-fold greater EPA+DHA induced postprandial 266 

increase in FMD in Asp298Asp versus Glu298Glu males and females, with the greater LDI 267 

responsiveness in Asp homozygotes evident in females only. Neither study examined the 268 

impact of genotype on the BP response to treatment. In the current study, the lack of overall 269 

impact of this gene variant on vascular function and SBP suggests that the SBP benefits 270 

observed may be independent of NO bioavailability and NO mediated vasodilation. The 271 

limited numbers of participants precluded any analysis being conducted on potential eNOS 272 

rs1799983 genotype * treatment interaction in the SHT group. 273 

The strengths of the current study are the relatively large group size and associated power to 274 

detect subtle BP changes, the cross-over design, the dose response approach, and the use of 275 
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dietary achievable EPA+DHA intakes. Limitations include a lack of ambulatory BP data and 276 

the retrospective secondary nature of the analysis, which resulted in relatively small numbers 277 

in the HT groups relative to those in the NT group. Our prospective recruitment approach 278 

ensured a group of UK adults (20-70 y) who were balanced with respect to sex, age and 279 

APOE genotype. This however resulted in a study population which was over-represented for  280 

APOE2 and APOE4 carriers relative to a typical Caucasian population, which comprise 20-25% 281 

and 55-60% respectively (54). Carrying an APOE4 allele has been associated with a greater 282 

risk of hypertension (55). Therefore it is possible that the efficacy of intervention in SHT in 283 

the FINGEN cohort may in part reflect a greater number of APOE4 carriers relative to the 284 

general population; this group was found to be particularly responsive to the triglyceride 285 

lowering impact of n-3 fatty acid intervention (18). However given that there was a roughly 286 

equal distribution of APOE4 genotype in SHTs (42%) and NTs (36%) it is unlikely that 287 

APOE4 genotype influenced the responsiveness in the SHT group. 288 

Conclusions: Our data indicate that in those with isolated systolic hypertension, daily doses 289 

of EPA+DHA as low as 0.7 g can bring about clinically meaningful blood pressure 290 

reductions. Full confirmation of findings in an RCT where participants are prospectively 291 

recruited on the basis of BP status is suggested to draw definite conclusions, with the 292 

inclusion of a measure of conduit artery function in order to gain insight into the 293 

physiological basis of the hypotensive response. 294 
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Figure Legends 313 

Figure 1. Effect of hypertension status at baseline on the systolic blood pressure and 314 

plasma DHA response to the control and fish oil interventions (0.7 and 1.8 g EPA+DHA 315 

per d) in healthy adults.  316 

 317 

(A)  Systolic blood pressure and (B) Diastolic blood pressure  318 

Data are mean difference with 95% CI, mmHg 319 

Hypertension (HT) status categorized individuals as either normotensive (Normal, n=264, SBP < 140 mmHg 320 

and DBP < 90 mmHg), dual hypertensive (DHT, n=17, SBP ≥ 140 mmHg and DBP ≥ 90 mmHg) or isolated 321 

systolic hypertensive (SHT, n=31, SBP ≥ 140 mmHg and DBP < 90 mmHg). 322 

In repeated measures analysis on end of treatment values, with baseline values and period as co-variates, a 323 

significant treatment * HT status interaction was evident for SBP (P = 0.046) and plasma DHA (P = 0.044).  324 

CO, control oil; 0.7FO, 0.7 g EPA+DHA per d; 1.8FO, 1.8 g EPA+DHA per d   325 

•   326 
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Table 1: Vascular and plasma biochemical responses to the control and two doses of fish oil for 8 wk each in healthy adults
1
  

 

 CO2 

8 wk 

0.7FO2 

8 wk 

1.8FO2 

8 wk 

P, treatment3 
P, sex * 

treatment3 

P, HT status4 * 

treatment3 

P, EPA+DHA 

status4 * 

treatment3 

BMI (kg/m2) 
25.2 ± 3.4

1,a 
25.4 ± 3.4

b 
25.3 ± 3.5

b 0.006 NS5 NS NS 

DBP, mmHg 
75.2 ± 9.2 74.6 ± 9.2 74.9 ± 9.8 NS NS NS NS 

SBP, mmHg 124 ± 15 123 ± 16 123 ± 16 NS NS 0.046 NS 

ACHAUC, flux units 
1300 ± 709

1 
1320 ± 779 1310 ± 671 NS NS NS NS 

SNPAUC, flux units 
1500 ± 781 1500 ± 857 1560 ± 834 NS NS NS NS 

        

Plasma PC EPA, % total FA 1.6 ± 0.8a 2.9 ± 1b 3.8 ± 1.2c <0.001
 

<0.001
6 0.08 (NS) NS 

Plasma PC DHA, % total FA 4.3 ± 1.2a 6.2 ± 1.2b 6.8 ± 1.4c <0.001
 NS 0.044 NS 

        

Nitrate + nitrite, μM 102 ± 40 104 ± 40 99 ± 38 NS NS NS 0.08 (NS) 

Endothelin-1, pg/ml 0.97 ± 0.51 0.96 ± 0.49 0.93 ± 0.44 NS NS NS NS 

sVCAM-1, ng/ml 1920 ± 952 1830 ± 926 1860 ± 927 NS NS NS NS 

sICAM-1, ng/ml 324 ± 135 315 ± 136 315 ± 122 NS NS NS NS 

sE-Selectin, ng/ml 75.9 ± 39.3 76.9 ± 37.9 76.2 ± 38.2 NS NS NS 0.07 (NS) 

sP-Selectin, ng/ml 67.4 ± 64.5 68.8 ± 76.2 68.5 ± 67.1 NS NS NS NS 

1
Data are mean ± SD, n=312 except for SNPAUC and ACHAUC where n = 161.  

2
CO- control oil; 0.7FO- 0.7 g EPA+DHA per d; 1.8FO- 1.8 g EPA+DHA per d, 
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3
To test for a treatment effect a repeated measures analysis was carried out, with baseline values and period as covariates. In order to establish response to treatment according to sex, HT 

and EPA+DHA status at baseline an interaction term between the group and treatment was included in the model, 
4
Hypertension (HT) status categorizes individuals as either normotensive (n=264, SBP < 140 mmHg and DBP < 90 mmHg), dual hypertensive (n=17, SBP ≥ 140 mmHg and DBP ≥ 90 mmHg) or 

isolated systolic hypertensive (n=31, SBP ≥ 140 mmHg and DBP < 90 mmHg): 
4
EPA+DHA status categorizes individuals in tertiles (T) according to EPA+DHA as a % of total plasma 

phosphatidylcholine fatty acids, 
5
NS is non-significant, P > 0.05, 

6
Males had significant differences relative to females for both low CO vs 0.7FO and CO vs 1.8FO, but not significantly different between 0.7FO and 1.8FO 

a,b,c 
Labelled means in a row without a common letter differ, P < 0.05, 

Abbreviations: ACHAUC- the vasodilatory response to acetylcholine, DBP-diastolic blood pressure, DPA- docosapentaenoic acid, FA- fatty acids, HT- hypertension, ICAM- intercellular adhesion 

molecule, PC- phosphatidylcholine, SBP-systolic blood pressure, SNPAUC- the vasodilatory response to sodium nitroprusside, VCAM- vascular cell adhesion molecule. 
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Table 2: Baseline characteristics of the cohort according to blood pressure status in healthy adults
1 

 NT (n=264)
2 

 

DHT (n=17)
2
 SHT (n=31)

2
 P

3 

Age, y 43.7 ± 12.81,a 54.0 ± 5.5b 53.4 ± 13.0b <0.001
 

BMI, kg/m2 25.1 ± 4.8a 27.1 ± 3.1b 27.3 ± 2.7b 0.011
 

Female/male 150/114 3/17 10/21 <0.001 

     

DBP, mmHg 73.0 ± 8.5
a
 98.4 ± 10.0

c
 81.1 ± 5.4

b
 <0.001

 

SBP, mmHg 119 ± 14a 157 ± 19c 146 ± 11b <0.001
 

ACHAUC, flux units
 

1530 ± 1050 1020 ± 413 1350 ± 573 NS
4 

SNPAUC, flux units
 

1720 ± 1064 1390 ± 452 1440 ± 558 NS 

     

Plasma PC EPA, % total FA 1.6 ± 0.8 1.8 ± 0.9 1.5 ± 0.7 NS 

Plasma PC DHA, % total FA 4.4 ± 1.2 4.6 ± 1.4 4.2 ± 1.3 NS 

     

Nitrate + nitrite, μM 98 ± 41 107 ± 46 104 ± 35 NS 

Endothelin 1, pg/ml 0.95 ± 0.49 1.03 ± 0.52 1.09 ± 0.59 NS 

sVCAM-1, ng/ml 1870 ± 933 1780 ± 849 1910 ± 851 NS 

sICAM-1, ng/ml 302 ± 132 330 ± 105 330 ± 142 NS 

sE-Selectin, ng/ml 72.2 ± 40.0 79.2 ± 41.4 80.3 ± 27.2 NS 

sP-Selectin, ng/ml 64.4 ± 71.4 72.6 ± 41.4 73.4 ± 102.9 NS 

1
Data are mean ± SD, n= 264, 17 and 31 for NT, DHT and SHT respectively for all variables apart from ACHAUC and SNP AUC 

where n= 142, 6 and 13 for NT, DHT and SHT respectively, 
2
Normotensive (NT), SBP < 140 mmHg and DBP < 90 mmHg; Dual hypertensive (DHT), SBP ≥ 140 mmHg and DBP ≥ 90 

mmHg; Isolated systolic hypertensive (SHT), SBP ≥ 140 mmHg and DBP < 90 mmHg, 
3
Inter-group differences were analyzed by 1-way ANOVA,  

4
NS is non-significant, P > 0.05, 

a,b,c 
Labelled means in a row without a common letter differ, P < 0.05, 

Abbreviations: ACHAUC- the vasodilatory response to acetylcholine, DBP-diastolic blood pressure, DPA- docosapentaenoic 

acid, FA- fatty acids, ICAM- intercellular adhesion molecule, PC- phosphatidylcholine, SBP-systolic blood pressure, SNPAUC- 

the vasodilatory response to sodium nitroprusside, VCAM- vascular cell adhesion molecule. 
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Table 3: Vascular and plasma nitrate plus nitrite responses to the control and two doses of fish oil 

for 8 wk each in healthy adults, according to eNOS genotype  

 CO2 

8 wk 

0.7FO2 

8 wk 

1.8FO2 

8 wk 

P, treatment 

*eNOS genotype3 

SBP, mmHg 

-Glu298Glu
 

-Glu298Asp 

-Asp298Asp 

 

123 ±  16
1 

123 ±  15 

127 ± 14 

 

124 ±  16 

122 ±  16 

126 ±  15 

 

124 ±  17 

122 ±  16 

126 ±  15 

NS4 

DBP, mmHg 

-Glu298Glu 

-Glu298Asp 

-Asp298Asp 

 

75.0 ± 9.1 

74.6 ± 9.5 

78.7 ± 7.9 

 

74.7 ±  9.3 

73.9 ±  9.1 

76.9 ±  8.6 

 

74.8 ±  9.5 

74.1 ±  10.2 

78.7 ±  9.2 

NS 

ACHAUC, flux units 

-Glu298Glu6 

-Glu298Asp 

-Asp298Asp 

 

1290 ± 656 

1370 ± 791 

1130 ± 567 

 

1210 ±  634 

1380 ±  895 

1610 ±  818 

 

1330 ±  669 

1260 ±  656 

1400 ±  848 

NS 

SNPAUC, flux units 

-Glu298Glu 

-Glu298Asp 

-Asp298Asp 

 

1470 ± 776 

1600 ± 833 

1270 ± 568 

 

1390 ±  738 

1590 ±  984 

1660 ±  857 

 

1590 ±  860 

1470 ±  811 

1690 ±  903 

NS 

Nitrate + nitrite, 

μM 

-Glu298Glu
6 

-Glu298Asp 

-Asp298Asp 

 

101 ±  42 

104 ± 39 

101 ± 37 

 

102 ±  40 

105 ±  39 

96 ±  35 

 

100 ±  43 

97 ±  32 

102 ±  36 

NS 

1
Data are mean ± SD, Glu298Glu, n=146, Glu298Asp, n=127 and Asp298Asp, n=30 for SBP, DBP and nitrate and nitrite; 

Glu298Glu, n=73 Glu298Asp, n=69 and Asp298Asp, n=15 for ACHAUC and SNPAUC,  
2
CO- control oil; 0.7FO- 0.7 g EPA+DHA per d; 1.8FO- 1.8 g EPA+DHA per d 

3
To test for a treatment effect a repeated measures analysis was carried out, with baseline values and period as covariates. 

In order to establish response to treatment according to eNOS genotype an interaction term was included in the model.  
4
NS is non-significant, P > 0.05, 

Abbreviations: ACHAUC- the vasodilatory response to acetylcholine, DBP-diastolic blood pressure, SBP-systolic blood 

pressure, SNPAUC- the vasodilatory response to sodium nitroprusside.  
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ONLINE SUPPORTING MATERIAL 

 

Supplemental Methods: FINGEN INCLUSION/EXCLUSION CRITERIA 

 

Inclusion criteria 

• Aged 20 to 70 y 
• APO E2/E2, E2/E3, E3/E3, E3/E4, E4/E4 
• Male or female 
• BMI 18.5-32 kg/m2 
• total cholesterol < 8.0 mM 
• TG < 3.0 mM  
• glucose < 6.8 mM. 

 

Exclusion criteria 

� APO E2/E4 
� suffered a myocardial infarction (MI) in the previous 2 years  
� chronic inflammatory conditions including inflammatory bowel disease (IBD) and 

irritable bowel syndrome (IBS) 
� diabetes or other endocrine disorders  
� pregnant, lactating or planning a pregnancy in the next 12 months 
� kidney or liver function markers outside the normal range  
� iron deficient (hemoglobin < 12 g/dL men, < 11 g/dL women)  
� on hypolipidemic medication 
� on anti-inflammatory medication  
� use of asthmatic inhalers > twice per month 
� use of aspirin > once per wk 
� on any fatty acid supplement 

For individuals on fatty acid supplements who are willing to stop taking their 
supplements, a wash-out period of 8 wk was required 

� consuming high doses of antioxidant vitamins (A, C, E, β-carotene). Maximum permitted 
intake: 800 μg/d Vitamin A, 60 mg/d Vitamin C, 10 mg/d Vitamin E and 400 μg/d β-
carotene  
For individuals on greater than the permitted dose of antioxidant vitamins and who are 
willing to stop taking their supplements, a wash-out period of 4 wk was required 

� consuming more than one serving (150 g) of oily fish per wk, which includes herring, 
mackerel, kippers, pilchards, sardines, salmon, trout, tuna (fresh), crabmeat or marlin. 
Canned tuna is permitted as it contains only minor amounts of long chain n-3 PUFAs 

� trained or endurance athletes or those who participate in more than 3 planned periods of 
exercise per wk 

� planning to lose weight by joining a weight reduction class or following an organized 
weight reducing regimen (e.g. the Slimfast Plan, Atkins Diet etc.) 

� use of Benecol or Flora Pro-Active spreads. 
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Supplemental Figure 1: Study CONSORT Flow Diagram 

 

 

 

 

 

 

 
Enrolled onto study

(n=374)

Excluded (n=427)
age/genotype/gender 
category full,
not meeting inclusion criteria 
and other reasons 

Completed visit 1
(n=364)

Completed the study and 
analysed for outcomes

(n=312)

Did not attend visit 1, 
withdrew consent (n=10)

Lost to follow-up (n=25)
reasons unknown/not given (n=18)
family problems (n=5)
moved from area (n=2)
Discontinued intervention (n=27)
diagnosed chronic diseases (n=6)
minor ailments (n=6)
pregnancy (n=2)
could not adhere (n=10)
change of medication use (n=3)

Screened and assessed 
for eligibility (n=801)

 The Journal of Nutrition NUTRITION/2015/220475 Version 4



 

 

Normal
DHT
SHT

Status
BP

0.16 (-1.08, 1.40)
4.35 (-2.02, 10.73)
-5.07 (-9.19, -0.96)

Control (95% CI)
difference: 1.8FO v
Mean

0.16 (-1.08, 1.40)
4.35 (-2.02, 10.73)
-5.07 (-9.19, -0.96)

Control (95% CI)
difference: 1.8FO v
Mean

  0-12 -6 0 6 12
Mean difference mmHg

Normal
DHT
SHT

Status
BP

-0.08 (-1.32, 1.17)
1.96 (-4.48, 8.39)
-4.98 (-9.14, -0.83)

Control (95% CI)
difference: 0.7FO v
Mean

-0.08 (-1.32, 1.17)
1.96 (-4.48, 8.39)
-4.98 (-9.14, -0.83)

Control (95% CI)
difference: 0.7FO v
Mean

  0-12 -6 0 6 12
Mean difference mmHg

Normal
DHT
SHT

Status
BP

0.23 (-1.01, 1.48)
2.40 (-4.16, 8.95)
-0.09 (-4.11, 3.93)

0.7FO (95% CI)
difference: 1.8FO v
Mean

0.23 (-1.01, 1.48)
2.40 (-4.16, 8.95)
-0.09 (-4.11, 3.93)

0.7FO (95% CI)
difference: 1.8FO v
Mean

  0-12 -6 0 6 12
Mean difference mmHg

 

Normal
DHT
SHT

Status
BP

2.40 (2.26, 2.54)
2.67 (2.04, 3.29)
2.81 (2.44, 3.19)

Control (95% CI)
difference: 1.8FO v
Mean

2.40 (2.26, 2.54)
2.67 (2.04, 3.29)
2.81 (2.44, 3.19)

Control (95% CI)
difference: 1.8FO v
Mean

  00 1.5 3
% of total fatty acids

Normal
DHT
SHT

Status
BP

1.86 (1.72, 2.00)
1.51 (0.88, 2.14)
2.42 (2.05, 2.79)

Control (95% CI)
difference: 0.7FO v
Mean

1.86 (1.72, 2.00)
1.51 (0.88, 2.14)
2.42 (2.05, 2.79)

Control (95% CI)
difference: 0.7FO v
Mean

  00 1.5 3
% of total fatty acids

Normal
DHT
SHT

Status
BP

0.54 (0.40, 0.68)
1.15 (0.51, 1.79)
0.39 (0.03, 0.76)

0.7FO (95% CI)
difference: 1.8FO v
Mean

0.54 (0.40, 0.68)
1.15 (0.51, 1.79)
0.39 (0.03, 0.76)

0.7FO (95% CI)
difference: 1.8FO v
Mean

  00 1.5 3
% of total fatty acids

 

 

 

 

 

 

 

A 

B 

 The Journal of Nutrition NUTRITION/2015/220475 Version 4



 

 

 

 The Journal of Nutrition NUTRITION/2015/220475 Version 4


