9 research outputs found
Inhibiting Hippo pathway kinases releases WWC1 to promote AMPAR-dependent synaptic plasticity and long-term memory in mice
The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.</p
Alterations in DNA Methylation and Hydroxymethylation Due to Parental Care in Rhesus Macaques
Early life is one of the most important and sensitive periods during the development of an individual. During this stage, the body and especially the brain are known to be greatly responsive to environmental cues, such as the early social environment. As a consequence, early life adverse social experiences in humans are associated with a wide range of health problems in adulthood. The broad range of phenotypes associated with early life stress (ELS) suggests a system-wide response of the organism, which is yet to be determined. In the last decade, increasing evidence suggests that epigenetic mechanisms underlie the effects of ELS on adult human health. However, there are critical challenges in delineating the direct effects of ELS on epigenetic profiles and phenotypes in human studies. It is impossible to randomize ELS and rare are the studies where complete information about past environmental insults is available, which would allow us to conclude on causality. Nonhuman primates offer several advantages in addressing these challenges. This chapter focuses on parental deprivation models in rhesus macaques which have been shown to produce an array of behavioral, physiological, and neurobiological deficits that parallel those identified in humans subjected to ELS. It describes the evidence for epigenetic alterations induced by differential rearing in this model and points out the differences between tissue-specific versus multi-tissue changes and outlines possible mechanisms for these to occur. In addition, it highlights the need for multi-omics longitudinal studies to better understand the epigenetic trajectories induced by ELS exposure and their impact on adult health