51 research outputs found

    Structure-Guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases

    Get PDF
    Indole is a significant structural moiety and functionalization of the C−H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl moieties on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. The presented results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds

    High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture

    Get PDF
    Numerous efforts have been undertaken to develop rectifying antennas operating at high frequencies, especially dedicated to light harvesting and photodetection applications. However, the development of efficient high frequency rectifying antennas has been a major technological challenge both due to a lack of comprehension of the underlying physics and limitations in the fabrication techniques. Various rectification strategies have been implemented, including metal-insulator-metal traveling-wave diodes, plasmonic nanogap optical antennas, and whisker diodes, although all show limited high-frequency operation and modest conversion efficiencies. Here a new type of rectifying antenna based on plasmonic carrier generation is demonstrated. The proposed structure consists of a resonant metallic conical nano-antenna tip in contact with the oxide surface of an oxide/metal bilayer. The conical shape allows for an improved current generation based on plasmon-mediated electromagnetic-to-electron conversion, an effect exploiting the nanoscale-tip contact of the rectifying antenna, and proportional to the antenna resonance and to the surface-electron scattering. Importantly, this solution provides rectification operation at 280 THz (1064 nm) with a 100-fold increase in efficiency compared to previously reported results. Finally, the conical rectifying antenna is also demonstrated to operate at 384 THz (780 nm), hence paving a way toward efficient rectennas toward the visible range

    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors

    Get PDF
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications

    Root Canal Anatomy of Maxillary and Mandibular Teeth

    Get PDF
    It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio

    Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

    Get PDF
    The REMARK “elaboration and explanation” guideline, by Doug Altman and colleagues, provides a detailed reference for authors on important issues to consider when designing, conducting, and analyzing tumor marker prognostic studies

    CBCT-based bone quality assessment: are Hounsfield units applicable?

    No full text
    Cone-beam CT (CBCT) is a widely applied imaging modality in dentistry. It enables the visualization of the high-contrast structures of the oral region (bone, teeth, air cavities) at a high resolution. CBCT is now commonly used for the assessment of bone quality, primarily for pre-operative implant planning. Traditionally, bone quality parameters and classifications were primarily based on bone density, which could be estimated through the use of Hounsfield units derived from Multi Detector Computed Tomography (MDCT) data sets. However, there are crucial differences between MDCT and CBCT which complicates the use of quantitative gray values for the latter. From experimental as well as clinical research, it can be seen that great variability of gray values can exist on CBCT images due to various reasons which are inherently associated with this technique (i.e. the limited field size, relatively high amount of scattered radiation, and limitations of currently applied reconstruction algorithms). Although attempts have been made to correct for gray value variability, it can be postulated that the quantitative use of gray values in CBCT should be generally avoided at this time. In addition, recent research and clinical findings have shifted the paradigm of bone quality from a density-based analysis to a structural evaluation of bone. The ever-improving image quality of CBCT allows it to display trabecular bone patterns, indicating that it may be possible to apply structural analysis methods which are commonly applied in micro computed tomography (μCT) and histology.status: publishe

    Florid expansile cemento-osseous dysplasia of the jaws: Cone beam computed tomography study and review of the literature

    No full text
    An interesting case of florid expansile cemento-osseous dysplasia (FECOD) of the maxilla and mandible in a 36-year-old female is being presented. The patient presented for consultation for orthognathic surgery and was unaware of these lesions. Upon clinical and radiographic examination, including cone beam computed tomography, massive cemento-osseous lesions in all quadrants were observed. The radiographic appearance of the lesions was consistent with cemento-osseous dysplasia (COD), the key difference being extreme expansion. Expansion, although not a new phenomenon, is present in all quadrants. These radiographic features suggest a variation of florid cemento-osseous dysplasia and is more aptly termed FECOD. This name is proposed for its diagnostic relevance based on the radiographic features. As with similar CODs, unless the lesions are disfiguring, conservative management is the preferred approach. Biopsy was not indicated unless there are additional associated complications. A detailed review of the pertinent literature was undertaken
    corecore