ChemCatChem

Supporting Information

Structure-Guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases

Ahmed R Aoun, Nagaraju Mupparapu, Diem N Nguyen, Tae Ho Kim, Christopher M. Nguyen, Zhengfeiyue Pan, and Sherif I. Elshahawi*

TABLE OF CONTENTS	PAGE
I-Supporting Experimental Section	S3
II-Supporting Figures	S4
Figure S1. Overall X-ray crystal structure of ligand-bound PriB (PDB ID 5INJ)	S4
Figure S2. Close up view of the PriB active site	S5
Figure S3. Structural-based alignment of PriB (PDB ID 5INJ, C6) with other IPTs	S6
Figure S4. Close-up view of the active site of the ligand-bound X-ray crystal structures of indole	S 7
prenyltransferases showing residues that align with PriB His312	
Figure S5. SDS-PAGE of PriB wild-type and mutant enzymes	S8
Figure S6. Circular dichroism spectra of PriB wild-type and mutant enzymes	S9
Figure S7. HPLC traces of wild-type and mutant PriB enzymatic reactions	S10
Figure S8. Steady state kinetics of recombinant wild-type and selected PriB mutants; (A) wild-type PriB, (B) PriB_H312E, (C) PriB_H312G, (D) PriB_H312K, (E) PriB_H312Q, (F) PriB_H312Y, (G) PriB_Y364H	S12
Figure S9. ¹ H– ¹ H COSY, ¹ H– ¹³ C HMBC and ¹ H– ¹ H NOSEY correlations of (2 <i>S</i>)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (d_6 –DMSO) 3b	S13
Figure S10. ¹ H– ¹ H COSY and ¹ H– ¹³ C HMBC correlations of (<i>S</i>)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1 <i>H</i> -indol-3-yl)propanoic acid (d_6 –DMSO) 3c	S13
Figure S11. ¹ H– ¹ H COSY and ¹ H– ¹³ C HMBC correlations of 1-(3-methylbut-2-en-1-yl)-L-tryptophan (<i>d</i> ₆ –DMSO) 3d	S13
Figure S12. Structural-based alignment of PriB (PDB ID 5INJ) with other C6 IPTs	S14
Figure S13. Close-up view of the active site of the ligand-bound structures of C6 indole prenyltransferases showing residues that align with PriB His312	S15
Figure S14. Close up view of IptA and 6DMATSmo showing key distances	S15
Figure S15. Nucleotide sequence of the codon optimized synthesized gene coding for IptA	S16
Figure S16. Nucleotide sequence of the codon optimized synthesized gene coding for 6DMATSsa	S16
Figure S17. Nucleotide sequence of the codon optimized synthesized gene coding for 6DMATSsv	S17
Figure S18. Nucleotide sequence of the codon optimized synthesized gene coding for 6DMATSmo	S17
Figure S19. SDS-PAGE of IptA, 6DMATSsa, 6DMATSsv and 6DMATSmo wild-type and mutant enzymes	S18
Figure S20. Circular dichroism spectra of IptA, 6DMATSsa, 6DMATSsv and 6DMATSmo wild-type and mutant enzymes	S19
Figure S21. Steady state kinetics of recombinant 6DMATSmo wild-type and mutants 6DMATSmo_Y277H, 6DMATSmo_H329Y and 6DMATSmo_Y277H_H329Y	S20
Figure S22. Sequence alignment of PriB with the AtmD, PaxD and JanD	S21
Figure S23. Close up view of IptA (A and B) and 6DMATSmo (6DMATSmo (C and D) showing key distances	S22
III-Supporting Tables	S23
Table S1. Primer names and sequences used in this study	S23
Table S2 . Summary of molecular formula, calculated and observed high-resolution mass spectrometry data of prenylated tryptophans generated in study	S24
Table S3. ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectroscopic data of (2S)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid 3b (d_6 -DMSO)	S24
Table S4. ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectroscopic data of (S)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)propanoic acid 3c and 1-(3-methylbut-2-en-1-yl)-L-tryptophan 3d (d_6 -DMSO)	S25
Table S5 . Residues that align with PriB His312 (position 1) and Tyr364 (position 2) present in selected indole prenyltransferases	S26
IV-Supporting References	S27
V-Supporting Mass and NMR Spectra	S28

I- Supporting Experimental Section

Chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and were used without further purification unless otherwise stated. All solvents used were of ACS grade or higher and purchased from Fisher Chemical. The pET28a E. coli expression vector was purchased from Novagen. E. coli DH5a and BL21(DE3) competent cells were purchased from New England Biolabs. All DNA sequencing was conducted with the primers T7 promoter (5'-TAATACGACTCACTATAGGG-3') and T7 terminator (5'-GCTAGTTATTGCTCAGCGG-3') obtained from Integrated DNA Technologies. Nucleic acid sequencing was performed at Retrogen, Inc (San Diego, California) or ACGT, Inc (Wheeling, Illinois). Gene analysis and alignments were performed using Geneious 11.1.5. All protein structures analysis were illustrated using Molsoft ICM64. The 6DMATSsa and 6DMATSsv homology models were generated using SWISS-MODEL. Analytical TLC was performed on silica gel aluminum TLC plates purchased from Sigma-Aldrich. Visualization was accomplished with UV light (254 nm), staining with potassium permanganate solution or phosphomolybdic acid reagent and heating. Dimethylallyl pyrophosphate was purified by gravity column chromatography using silica gel (Silicycle) 60-100 or 100-200 mesh. PD-10 columns and Ni-NTA super flow columns were purchased from GE Healthcare. The NMR spectra were recorded at a 400 MHz for ¹H, 100 MHz for ¹³C and 162 MHz for ³¹P using Bruker NMR spectrometer (Chapman University School of Pharmacy Nuclear Magnetic Resonance facility) and the one-dimensional ¹H, ¹³C and ³¹P as well as two-dimensional ¹H-¹H COSY, ¹H-¹³C HSOC, ¹H-¹³C HMBC and ¹H-¹H NOESY spectra were recorded at ambient temperature (~25 °C) using 99.8% d₆-DMSO and D₂O obtained from Cambridge Isotope Laboratories as solvents for Trp-analogs and pyrophosphate substrates, respectively. Chemical shifts were referenced and calibrated to internal solvent resonances (DMSO, $\delta_{\rm H}$ 2.50 ppm, $\delta_{\rm C}$ 39.52 ppm; D₂O, $\delta_{\rm H}$ 4.79 ppm) and are reported in parts per million (ppm) with coupling constants J given in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, g = quartet, m = multiplet. Spectra were processed with MestreNova (Mestrelab Research).

High Performance Liquid Chromatography (HPLC) analysis were performed using a Shimadzu HPLC LCMS-2020 equipped with a diode array detector SPD-M20A (HPLC methods A and B). Purification of derivatives of Tryptophan was performed on Shimadzu (Model CBM-20A) equipped with a diode array detector SPD-M40 (HPLC methods C) and Hitachi HPLC equipped with a diode array detector L-2455 (HPLC methods D). Signals were detected at $\lambda = 230$, 254, 280 nm. Low resolution (LR) and high resolution (HR)-ESI-MS experiments were carried out using Bruker Impact II Ultra High Resolution Qq-Time-Of-Flight mass spectrometry in the positive and negative mode equipped with Thermo Scientific DIONEX 3000 UHPLC (HPLC method E).

HPLC Method A: AscentisTM C18 (5 μ m, 250 mm × 4.6 mm) column (Supelco) [25% B for 8 min, gradient of 25% B to 70% B over 40 min, 100% B for 5 min, 100% B to 25% B over 0.5 min, 25% B for 7 min (A = Milli-Q grade H₂O with 0.1% formic acid; B = Methanol with 0.1% formic acid, flow rate = 1.0 mL min⁻¹;A₂₂₀, ^{254, 280}].

HPLC Method B: AscentisTM C18 (5 μ m, 250 mm × 4.6 mm) column (Supelco) [7% B for 3 min, gradient of 7% B to 100% B over 14 min, 100% B for 3 min, 100% B to 7% B over 0.1 min, 7% B for 5 min (A = Milli-Q grade H₂O with 0.1% formic acid; B = acetonitrile with 0.1% formic acid, flow rate = 1.0 mL min⁻¹; A_{220, 254, 280}].

HPLC Method C: AscentisTM C18 (5 μ m, 250 mm × 10 mm) column (Supelco) [15% B for 10 min, gradient of 15% B to 45% B over 45 min, 45 to 100% B for 0.5 min, 100% B for 5 min, 100% B to 15% B over 0.5 min, 15% B for 7.5 min (A = Milli-Q grade H₂O with 0.1% trifluoroacetic acid; B = acetonitrile with 0.1% trifluoroacetic acid, flow rate = 4.0 mL min⁻¹; A₂₈₀)].

HPLC Method D: AscentisTM C18 (5 μ m, 250 mm × 10 mm) column (Supelco) 15% B for 10 min, gradient of 15% B to 45% B over 45 min, 45 to 100% B for 0.5 min, 100% B for 7 min, 100% B to 15% B over 0.5 min, 15% B for 7.5 min (A = Milli-Q grade H₂O with 0.1% formic acid; B = Methanol with 0.1% formic acid, flow rate = 4.0 mL min⁻¹; A₂₈₀].

HPLC Method E: TitanTM C18 80 Å (1.9 μ m, 50 mm × 2.1 mm) column (Supelco) [7% B for 2 min, gradient of 7% B to 100% B over 8 min, 100% B for 2 min, 100% B to 7% B over 0.5 min, 7% B for 2.5 min (A = Milli-Q grade H₂O with 0.1% formic acid; B = acetonitrile with 0.1% formic acid, flow rate = 0.3 mL min⁻¹; A₂₈₀)].

II-Supporting Figures

Figure S1. Overall X-ray crystal structure of ligand-bound PriB (PDB ID 5INJ) previously reported.^[1] Protein structure depicted in cartoon representation. The ligands are illustrated as ball-and-stick models with the following color code: carbon, dark blue (L-Trp) and red (DMSPP); oxygen, light red; nitrogen, light blue; phosphorous, orange; sulfur, yellow.

Figure S2. Close up view of the PriB active site. (A) Distance between DMAPP-analog C1' and each of the benzene carbons in tryptophan. (B) Distances between His312 basic nitrogen and each of the benzene carbons in tryptophan. Distances shown in Å.

Figure S3. Structure-based alignment of PriB (PDB ID 5INJ, C6)^[1] with other indole prenyltransferases; DMATS1 (PDB ID 8DB0, N1),^[2] AmbP3 (PDB ID 5Y7C, C2),^[3] FtmPT1 (PDB ID 3O2K, C2),^[4] CdpNPT (PDB ID 4E0U, C3 rearranges to N1),^[5] AnaPT (PDB ID 4LD7, C3),^[6] FgaPT2 (PDB ID 3I4X, C4),^[7] 5DMATSsc (PDB ID 6ZRZ, C5),^[8] MpnD (PDB ID 4YLA, C7).^[9] Red and blue square highlights residues that align with PriB His312 and Y364, respectively. Enzyme names and PDB ID are stated. Conserved residues are highlighted in green, pale green and yellow. Secondary structures are shown below the alignment.

Figure S4. Close-up view of the active sites of the ligand-bound X-ray crystal structures of indole prenyltransferases showing residues that align with PriB His312. Enzymes shown are (A)PriB (PDB ID 5INJ),^[1] (B) DMATS1 (PDB ID 8DB0, DMSPP added by docking),^[2] (C) AmbP3 (PDB ID 5Y7C),^[3] (D) FtmPT1 (PDB ID 3O2K),^[4] (E) CdpNPT (PDB ID 4E0U),^[5] (F) AnaPT (PDB ID 4LD7, L-Trp added by docking),^[6] (G) FgaPT2 (PDB ID 3I4X),^[7] (H) 5DMATSsc (PDB ID 6ZRZ),^[8] (I) MpnD (PDB ID 4YLA).^[9] The ligands are illustrated as ball-and-stick models with the following color code: carbon, dark blue (L-Trp) and red (DMSPP). Enzymes are shown as ribbon, His312 and aligned residues are shown as sticks. L-Trp, L-tryptophan; DMSPP, dimethylallylthiophosphate; HPA, hapalindole A; BVF, brevianamide F; SPP, thiopeptide; ILV, indolactam V.

Figure S5. SDS-PAGE for *N*-His₆-PriB wild-type (43.3 kDa, including a 2.2 kDa His tag) and mutant enzymes characterized in this study.

Figure S6. Circular dichroism spectra of PriB wild-type and mutant enzymes. Purified proteins were dissolved in 10 mM sodium phosphate buffer, 100 mM sodium fluoride at a concentration of approximately 200 µg ml⁻¹. Spectra were recorded on a Jasco J1500 spectropolarimeter at 25 °C using quartz cells (Alpha Nanotech) with a pathlength of 0.1 cm.

S10

Figure S7. HPLC traces of wild-type and mutant PriB enzymatic reactions containing Tris 50 mM (pH 8.0) in 0.5 mM L-Trp (1) and 1 mM DMAPP (2) in the presence of 8.3 μ M wild-type PriB (i), PriB_H312A (ii), PriB_H312C (iii), PriB_H312D (iv), PriB_H312E (v), PriB_H312F (vi), PriB_H312G (vii), PriB_H312I (viii), PriB_H312K (ix), PriB_H312L (x), PriB_H312M (xi), PriB_H312N (xii), PriB_H312P (xiii), PriB_H312Q (xiv), PriB_H312R (xv), PriB_H312S (xvi), PriB_H312T (xvii), PriB_H312V (xviii), PriB_H312W (xix), PriB_H312Y (xx), PriB_H312Y (xx), PriB_H312T (xvii), PriB_H312V (xviii), PriB_H312W (xix), PriB_H312Y (xx), PriB_H312Y (xx), PriB_H312Y (xx), PriB_H312F (xvi), PriB_H312N (xvi), PriB_H312V (xviii), PriB_H312W (xix), PriB_H312Y (xx), PriB_Y364H (xxi) and no enzyme (xxii). Reactions were incubated at 37 °C for 16 h and quenched with 1× methanol and monitored at A₂₈₀. **1**, **3a** indicate L-Trp and 6-dimethylallyltryptophan, respectively.

Figure S8. Steady state kinetics of recombinant wild-type and selected PriB mutants; (A) $185 \times 10^{-3} \mu$ M wild-type PriB, (B) 9.2 μ M PriB_H312E, (C) 36.9 μ M PriB_H312G, (D) 36.9 μ M PriB_H312K, (E) 36.9 μ M PriB_H312Q, (F) 73.8 μ M PriB_H312Y, (G) $369 \times 10^{-3} \mu$ M PriB_Y364H. Assays consisted of 50 mM Tris (pH 8.0), almost saturating DMAPP (2 mM) with variable L-Trp (5 × $10^{-2} - 5$ mM). Reactions were incubated at 37 °C for 240 min.

Figure S9. ${}^{1}H-{}^{1}H \text{ COSY } (-)$, ${}^{1}H-{}^{13}C \text{ HMBC } (-)$ ${}^{1}H-{}^{1}H \text{ NOSEY } (-)$ correlations of (2*S*)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (*d*6–DMSO) **3b**.

Figure S10. ¹H–¹H COSY (—) and ¹H–¹³C HMBC (\frown) correlations of (*S*)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1*H*-indol-3-yl)propanoic acid (*d*₆–DMSO) **3c**.

Figure S11. ¹H–¹H COSY (—) and ¹H–¹³C HMBC (\frown) correlations of 1-(3-methylbut-2-en-1-yl)-L-tryptophan (d_{6-} DMSO) 3d.

Figure S12. Structure-based alignment of PriB^[1] (PDB ID 5INJ) with other C6 indole prenyltransferases; IptA^[10] (PDB ID 7W8V), 6DMATSsa^[11] (homology model to PriB), 6DMATSsv^[11] (homology model to PriB) and 6DMATSmo^[8] (PDB ID 6ZRX). Red and blue square highlights residues that align with PriB His312 and Y364, respectively. Enzyme names and PDB ID are stated. Conserved residues are highlighted in green, pale green and yellow. PriB secondary structure is shown below the alignment.

Figure S13. Close-up view of the active site of the ligand-bound structures of C6 indole prenyltransferases showing residues that align with PriB His312 and Tyr364. Enzymes shown are (A) PriB^[1] (PDB ID 5INJ), (B) IptA^[10] (PDB ID 7W8V), (C) 6DMATSsa^[11] (homology model to PriB, docked with, (D) 6DMATSsv^[11] (homology model to PriB) and (E) 6DMATSmo^[8] (PDB ID 6ZRX). The ligands are illustrated as ball-and-stick models in dark blue (L-Trp) and red (DMSPP). Enzymes are shown as ribbon, His312/Tyr364 and aligned residues are shown as sticks. L-Trp, L-tryptophan; DMSPP, dimethylallylthiophosphate.

Figure S14. Close up view of (A) Ipt^[10] and (B) 6DMATSmo^[8] showing key distances. The ligands are illustrated as ball-and-stick models in dark blue (L-Trp) and red (DMSPP). Enzymes are shown as ribbon, His294/Tyr346 (A) and Tyr377/His329 are shown as sticks. L-Trp, L-tryptophan; DMSPP, dimethylallylthiophosphate. Distances shown in Å.

5**′ -**

ATGGTCACAGGGGGCCGTAGCCCCATGTGCGATACCGTCGGCAGTTCATTGGCACGTCTGGAACCCACTCAAC TTGGGGGGTTTGGTGACAGACCAACTGGCTCGTCTTTGTGATGTTGCAAGACTGGACCGTACCGACACAGAGAC CTATGTGCAGACACTGGCAACATCGTTAGGTACTGCAGCAGAGAGATCGCTTGCCTTGCCGCCGACGACGGCA ACCCTGCTGAGCGACGACCACACACCTGTAGAATACTCGTTAGCATTCTTGCCAGGTGCTACACCGGCTCTTC GGGTTTTAGTTGAGCCAGGTTGGGATAGCGGTGACTTGGCAGAAAATGGCCGCGCGGGCCTTCGTGCTATTCG GGCAATGGCCGACCGTTGGAACTTTTCAACAGATCAATTGGACCTTTTGGAGGATTTGTTTTTCCCGTCGCA CCAGCGGGTCCTTTCGCACTTTGGTGTGCCCTTGAACTTCGCCCTGGCGGCGTGCCAGGAGTTAAGGTCTACC TGAACCCCGCGGCACGTGGCCGTGACCGCCGCGCCGAAACTTTGCGCGAGGCATTAGATCGTTTAGGTCATCG TCAGGCTTTCGCCGCACTGCCCCGGCGGATGACTATCCGTTTCTGGCTTTAGACTTAGGGGAGTGGGCGGCG CCGCGTGTAAAAGTTTATTGCACACATGAATCCCTGTCAGCTCAAGAAGCGGGCGAGTATTCGAGACTTGCAG CCGCCGACGGGAGAGACCAGACCACAGATTTTTTTCATGCCGTAGCAGGAACTGATGCTGGCGGGACTGGCCA ACCGTCTACTCGCCGTGCTTTAACATGCCATAGTTTCACTGACACTGTTACTGGGCGTCCCAGTGGTTTTACA CTTCACATGCCCGTACGGTCTTACGTGGAGCACGATGGAAGAGCACGCGGCCGGGCAGCAGATGTCTTGAGAC GCTACGGGATGGATAACGATGCTCTGGATAGAGCCTTAGCGGCGGTGACGCCACGCCCCTTGGATGACGGAGT AGGACTGGTTGCTTACGTAGCTTTGGTGCATCAGTTGGGTCGGGACCCAAGAGTGACAGTATACGTTAGCTCG GAGGCATACGCAGTTCAGCCCCCCGTACAGCGTTAGCCACTGGGCCGGGGATCGGTCGTTAA-3'

Figure S15. Nucleotide sequence of the codon optimized synthesized gene coding for IptA.

5**′** –

ATGACAACCGTACGTACAGGGGCTGAACCGGGTGGCGCACCAACTTTGGGCGCCCTTAACATCAGGACAGTTGC GCCGTTTAGGTGCTGTTGCGGGGCTTAAGTGAAGCAGACGTAGAAACCTATGCGCGCGTCCTTACCGATGCACT GGGTCCCGTTGCGGCTCGCCCTTTACATCTGCCACCACCGACCCGTACGTTTCTCAGTGACGATCATACGCCG GTAGAATTCTCATTCTCTTTACAACCTGATGCAGCTCCAGCACTTCGTGTGCTGCTGGAGCCAGGATGTGGTG CTGATTCCTTGGCATTAAATGGTCGCGCTGGCTTAGAGACAATTCGTGGCATGGCACGTCGTTGGAATTTCAC TACAGCACCTTTAGATGAGGTTGAGGATTTATTTCTGCCACCTGCCCCACAAGGTCCATTGGCGTTGTGGTGT GCGCTCGAATTACGTCCAGGTGGTGTTCCTAAAGTCAAAGTTTACCTCAATCCAGCAGCTAATGGAGCAGAAC GCTCGGCTGCAACCGTACGTGAAGCGCTCCATCGTTTAGGACATCGTCGTGCGTTTGATTCTCTTCCTCGTGG TACCGGCCATCCGTTCCTTGCATTGGATCTGGGTGACTGGGAAGATCCTCGTGTGAAAGTCTACGTGCGTCAT GACAATCTCACCGCTCGTCAAGCGGGGCTTCTGAGCCGTGAGGGAACAGGTCCTGGTCCTGCAGCAGTGGAAG GCTTCTTTCGTGCCGCAGCTGGCGTCCGGTCCAGATCGTTCAGGTCTTGATCGTCGTCCTGGATTAACATGTCA TTCATTTACGGATACGGGCAGTGGTCGTCCGAGCGGCTTTACCTTGCATATTCCGGTTCGTGATTATGCACGT GCGCTTTTGCTGCATTAACTCAACGTCGCCCCGAGGATGGCGTTGGCTTGATTGCATATCTGGCACTGGCACA TCAACAAGGTCGTCCACCTCGTGTGACCGCATATTTGAGCTCCGAGGCGTATGCGGTCCGCGCCCCAGCCGTA GCGGCGGTTCGTCGTCCTGTAGCAGTCCGTTGA-3'

Figure S16. Nucleotide sequence of the codon optimized synthesized gene coding for 6DMATSsa.

5**′ -**

ATGAACGGATTCCATTCAGGCGAAGCCTTACTTGGAGACTTAGCAACCTCGCAATTAACCCGTTTATGCCAGG TCGCAGGGTTGTCTGAGGCTGATACCGCAGCCTATACTGGCGTACTGATCGAATCCCTGGGAGCCAGCGCAGG GCCTTCCTGCCAGGACAAGCACCGGACTTGCGTGTACTGGTGGAACCGGGATGCTCTCGTGGGGACGACTTGG CTGAGAATGGGCGGGCAGGTCTTCAGGCAATCCATGCTATGGCCGACCGTTGGGGGATTCAGCACGGATCAATT AGATCGCCTGGAAGACTTGTTCTTCCCGCACTCGCCTGAAGGCCCACTTGCGCTTTGGTGCGCTCTGGAGTTA CGGCCGGGTGGTGTTCCCGGGATTAAAGTCTATCTTAATCCTAGTGCAAATGGCGCTGATCGCGCCGCTGAAA CCGTTCGCGAAGCCCTGGCGCGCCTTGGGCACCGGCAAGCGTTCGATTCCCTTCCCCGGTCAGACGGATTTCC CTTCTTCGCCTTAGACTTGGGTGATTGGGATGCTCCACGGGTAAAAGTTTACCTGAAACACCCCGGGCCTTTCA CCTACAGAGGCCGGTAGCCTGCCACGTATGTCACCTGCACCCGGGCCCGAGCGCCTGGAAGAGTTCTTTCGGA CGGCGGGAGACTTACCCGCTGACGATTTGACGGCAGATGAGGATGCGGTACGCCTTACAGGCAGACCCGCTCT CCTTGGATCGGGCTTTGGCCGCCGTTTCCCCTCGCCCCTTAGGAGACGGAGTAGGGCTTATTGCCTATCTTGC TCTTGTACACGAGAGAGGCAGACCGCAACGTGTTACTGTGTACGTCTCATCCGAGGCCTATAGAACTCGGCCT CCGCGCGAGACCGTACCGACGCGCGACCGGGTGCGTGCCGGGCTGTAA-3'

Figure S17. Nucleotide sequence of the codon optimized synthesized gene coding for 6DMATSsv.

5**′ -**

ATGGCGGGTCTGTCTGTTTCTGACCACCTGGACGGTCAGCTGGCGCGTCTGTGCGAAGTTGCGGGTGCGGACC CGGTTGAACCGCGTAACCTGCTGGCGGGTCTGCTGGGTCCGGTTGGTCCGCGTCCGCTGTACGAACCGCCGGC GTGGCCGTCTGGTGTTTCTGACGACCACACCCCGGTTGAATTCTCTATCGCGTTCAACGAAGCGGAACCGCCG ACCCTGCGTATCCTGGGTGAAACCCTGGGTTCTCCGCCGGGTCCGCTGGCGAACCTGTCTGCGACCCGTGGTT TCCTGGACGCGCGCGCGTCGTGCGGGGTCTGTCTACCTCTCGTCTGGACTCTGTTCGTGACCTGTTCGCGAC CGACGACCCGCAGGGTGACTTCGCGATGTGGTGCTCTCTGGTTTTCCGTTCTTCTCGTCGTCCGGAATTCAAA GTTTACCTGAACCCGGAAGTTAAAGGTGTTGAACGTTCTCCGGCGCTGGTTTCTGAAGCGCTGCACCGTCTGG GTCTGGGTGCGTCTTACCGTGCGCTGCTGGACCACGGTGTTCGTCCGGGTGAACTGGGTCGTGGTGACCGTCT GACCTTCTTCGCGGTTGACCTGCACGACGGTCCGCAGGCGCGTGTTAAACTGTACCTGACCCACCACGAAGCG GAAGTTTGGGACGTTACCCGTGCGGCGTCTGTTGTTGACGGTGTTGACGTTGCGGAAATCGAAGAATTCTGCG GGACCGTCCGGTTGGTTACTCTATCTACGTTCCGATCCGTTCTTACGTTACCGACGACGACGAGGAAGCGCGTGAC CGTGTTGCGGCGCTGCTGGTTCGTTACGGTTTCGACACCGACGGTCTGGACCGTGCGATCGCGGCGGTTACCC CGCGTCCGCTGCGTGACGGTGTTGGTCTGATCGCGCACGTTTCTCTGCGTCTGGGTGCGCCGCGTCCGGGTGT TACCGTTTACCTGTCTGCGGAAGCGTACCGTGTTTCTCCGCCGCGTCCGCGTCGTATGCCGGCGGGTCGTGAC GTTTCTCCGGCGCCGGTTGGTCGTACCCGTCCGTAA-3'

Figure S18. Nucleotide sequence of the codon optimized synthesized gene coding for 6DMATSmo.

Figure S19. SDS-PAGE for *N*-His₆-IptA (43.5 kDa, including a 2.2 kDa His tag), *N*-His₆-6DMATSsa (42.1 kDa, including a 2.2 kDa His tag), *N*-His₆-6DMATSsv (43.0 kDa, including a 2.2 kDa His tag), *N*-His₆-6DMATSmo (42.8 kDa, including a 2.2 kDa His tag) wild-type and mutant enzymes characterized in this study.

Figure S20. Circular dichroism spectra of (A) IptA, (B) 6DMATSsa, (C) 6DMATSsv and (D) 6DMATSmo wild-type and mutant enzymes. Purified proteins were dissolved in 10 mM sodium phosphate buffer, 100 mM sodium fluoride at a concentration of approximately 200 μ g ml⁻¹. Spectra were recorded on a Jasco J1500 spectropolarimeter at 25 °C using quartz cells (Alpha Nanotech) with a pathlength of 0.1 cm.

Figure S21. Steady state kinetics of recombinant (A) $374 \times 10^{-3} \mu$ M 6DMATSmo wild-type and mutants (B) 37.4μ M 6DMATSmo_Y277H, (C) 37.4μ M 6DMATSmo_H329Y, (D) 37.4μ M 6DMATSmo_Y277H_H329Y. Assays consisted of 50 mM Tris (pH 8.0), almost saturating DMAPP (2 mM) with variable L-Trp ($5 \times 10^{-2} - 5$ mM). Reactions were incubated at 37 °C for 240 min.

PriB AtmD JanD PaxD	MIGG MIST MIGS MIQS	PM PK HE DE	S – S S D V E I L Q	T C L - I I -	S P R P P P	H Q W Q W E	– – S L S L	A R A A A E	G M G L G L	G F G F G F	H S K N S S	GE HH PD AD		R L Y	G D WW WW WW	L A A T T A T V	F C F C F C			TR EK NQ	L C L L L M	E V A L E W			E V S I	AD SL AE SE	TA QY QY KY	AY QH RV RV	TG LS LA LA	VL FL FL	IE Yh Hr	SL HL YV YV	G T L P I P I P	5 A Y L T C T C	G - G P G P	RP YP KP RP
PriB AtmD JanD PaxD	L S L T V E Y R N K P N	P P NG GE GD	PS FA QY QY	-R NK NK	IF F	LS YS MG MG	DD PD FD FD	HT GT HT HT	PV PA PI	EF QV QV	S L S L S I S I	A N N	L D (Y Y	G G P N S N S	RA KK KA	PH TV TV TV	LR RM RT RT	RVI IDH FAN		E P P I P I P I	G C S Q C A S E	S S WS L S A S	G G G G G	D I P I A I	D	E - P F P I P I	NG CQ NQ NQ	R A N V K A K A	G L A L T A S L	R A E L D T D T	VH TK LK	T M S L A Q S Q	A D A G K H R H	R W T L L A L V	- G P D P G P G	F S F T N D H N
PriB AtmD JanD PaxD	TEQ WDW LRW LRL	L D F N F E F K	RL HF HF HF	ED VQ AK TD	LF TM AF	F I F I F I	S S P E P N P N	P E P A D E E E	G P T D A H A N	L - VV L I I L	L A N A N A	R – K V E L		P P R R	n f V L T I	AL RR AM AM	W C M A Q C Q A		E S S G C C	KR VN MLI	S G G C S Y S Y	G V D L D F D F	(P) L T P P P Y			Y L R V R T R T	N P K P K V K V	A A V F A M A I	N G N A S P C P	A D L W I W MW	RA KS KH	A E I E I E MQ	TV TG TG VK	R - I P R P R P	H D H G M G	K L D L D L
PriB AtmD JanD PaxD	L F D M I Q M I S	S S S	R N K D K D	N T L G I L G	- E. E L D E.	AL FG AT AA	A R A Y G Y D Y	LG LP MQ MK	H L A L S L S L	QA QV QV KV	FD LE LE	A L D Y E F D F		R S S S S	DG DR EA EK	F P A K A K A V	E F D A Q S	Q T A G N	 F R (/ S F A Y /	G C P A A I		AL SF AF AF	D D D	NI	- L (- A - S - T (GD TS EN DD	WD K YK YQ	A P D A S S R T	R V R L R I R V	<u>к I</u> к I к I	YL YL YL YF	H G A T A T	- K P Q P R Q S	HL TA TA TA	G M F N	SA KV RM NM
PriB AtmD JanD PaxD	ADA EDA VDI VDI	GS FT FT FT		G R G R G R	SP LS LN LD	A P N P G P G P	SR NI E M E M	E Q Q T D R Q R	L E G V A T A T	E F K E Q A K E	FR LR LR LR	T - K L L L	W	A G A A S S A S	DL VL VII	PA NL NV AI	P 0 P 5 P 5 P 5		PGI PI	P T E S D N D D	E D E D D D E T	T - L - I V	GR PA PK		A G I D D P H I P L I		AL QG AC AG	TC WL VI VI	HS VN FN FN	F⊤ YE FE	E T L R I W	A T P N P G	G R N P A S A D	P S V P V P K P	GY EP TP NP	⊤L KV KI
PriB AtmD JanD PaxD	H V P Y I P Y L P Y L P	VR V A A A C A	DY N Y Y	V R V K G K G K	H D D Q P D D D	G E D S L E L D	AR IV IA	DR QG EG DG	AV LQ MD MD	AV EF VF SF	LR FD FK FK	R H S Q D Q		// D - S // N // S	SA MD QP KS	AL VR FH FH	DR DY SY SY	RAL RE TE	. A / D I I D N Y D N Y	A V F E Y A Y I	S P T L K A K A	R P F L F L F V	L S D A R D K D			G L T G T C M C	A H R H R H		A L I T I S I S	VH FS FS FS	QR YK YK YK	GR AH GE GQ	P T P - G A G A	RV YV YV YI		¥∨ ¥Y ¥Y ¥Y
PriB AtmD JanD PaxD	5 S E K P H K P E K P E	AY LE LD LS	E VI P V A F / E Y /	R P A D / A D	PR PA AA PS	E T K E T W V W	VP LE VP AP	T R E S E - K L	D R D V F -	A R K G 	AR LS IY -K	L K K																-								

Figure S22. Sequence alignment of PriB with AtmD,^[12] JanD^[13] and PaxD.^[14] Red boxes highlight amino acid residues that align with PriB His312 and Tyr364.

Figure S23. Close up view of IptA^[10] (A and B) and 6DMATSmo^[8] (C and D) showing key distances. The ligands are illustrated as ball-and-stick models in dark blue (L-Trp) and red (DMSPP). His294/Tyr346 (A and B) and Tyr377/His329 (C and D) are shown as sticks. L-Trp, L-tryptophan; DMSPP, dimethylallylthiophosphate. Distances shown in Å.

III-Supporting Tables

Table S1. Primer names and sequences used in this study. Underlined nucleotide residues are sites of mutations.

Primer Name	Primer Sequence
PriB_H312A-F	5'-CTA CAC CCT C <u>GC T</u> GT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312C-F	5'-CTA CAC CCT C <u>TG T</u> GT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312D-F	5'-CTA CAC CCT C <u>GA T</u> GT GCC GGT CCG CGA CTA C-3'
PriB_H312E-F	5'-CTA CAC CCT C <u>GA A</u> GT GCC GGT CCG CGA CTA CG-3'
PriB_H312F-F	5'-CTA CAC CCT C <u>TT T</u> GT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312G-F	5'-CTA CAC CCT C <u>GG T</u> GT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312I-F	5'-CTA CAC CCT CAT TGT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312K-F	5'-CTA CAC CCT C <u>AA A</u> GT GCC GGT CCG CGA CTA C-3'
PriB_H312L-F	5'-CTA CAC CCT C <u>TT A</u> GT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312M-F	5'-CTA CAC CCT CAT GGT GCC GGT CCG CGA CTA CGT CCG GCA CGA CGG-3'
PriB_H312N-F	5'-CTA CAC CCT C <u>AA T</u> GT GCC GGT CCG CGA CTA C-3'
PriB_H312P-F	5'-CTA CAC CCT C <u>CC T</u> GT GCC GGT CCG CGA CTA CGT CC-3'
PriB_H312Q-F	5'-CTA CAC CCT C <u>CA A</u> GT GCC GGT CCG CG-3'
PriB_H312R-F	5'-CTA CAC CCT C <u>AG A</u> GT GCC GGT CCG CGA CTA CGT CCG-3'
PriB_H312S-F	5'-CTA CAC CCT C <u>TC A</u> GT GCC GGT CCG CGA CTA CGT CCG GCA C-3'
PriB_H312T-F	5'-CTA CAC CCT C <u>AC T</u> GT GCC GGT CCG CGA CTA CGT CCG GCA C-3'
PriB_H312V-F	5'-CTA CAC CCT C <u>GT A</u> GT GCC GGT CCG CGA CTA CGT CCG GCA CG-3'
PriB_H312W-F	5'-CTA CAC CCT C <u>TG G</u> GT GCC GGT CCG CGA CTA CGT CCG G-3'
PriB_H312Y-F	5'-CTA CAC CCT C <u>TA T</u> GT GCC GGT CCG CGA C-3'
PriB_H312X-R	5'-CCG CTG GGC CGC CCG GTC-3'
PriB_Y364H-F	5'-CCT GAT CGC C <u>CA T</u> CT GGC ACT-3'
PriB_Y364H-R	5'-CCC ACC CCG TCA CTC AGC-3'
IptA_H294Y-F	5'-TTT TAC ACT T <u>TA T</u> AT GCC CGT ACG GTC TTA C-3'
IptA_H294Y-R	5'-CCA CTG GGA CGC CCA GTA-3'
6DMATSsa_H284Y-F	5'-CTT TAC CTT G <u>TA T</u> AT TCC GGT TCG TGA TTA TG-3'
6DMATSsa_H284Y-R	5'-CCG CTC GGA CGA CCA CTG-3'
6DMATSsv_H287Y-F	5'-TTA TAC GCT G <u>TA T</u> GT TCC CGT AAG-3'
6DMATSsv_H287Y-R	5'-CCA GAA GGA AGG CCA GTT-3'
6DMATSmo_Y277H-F	5'-TTA CTC TAT C <u>CA T</u> GT TCC GAT CCG TTC TTA CGT TAC C-3'
6DMATSmo_Y277H-R	5'-CCA ACC GGA CGG TCC GCA-3'
6DMATSmo_H329Y-F	5'-TCT GAT CGC G <u>TA T</u> GT TTC TCT GCG-3'
6DMATSmo_H329Y-R	5'-CCA ACA CCG TCA CGC AGC-3'
T7	5'-TAA TAC GAC TCA CTA TAG GG-3'
T7 Terminator	5'-GCT AGT TAT TGC TCA GCG G-3'

Table S2. Summary of molecular formula, calculated and observed high-resolution mass spectrometry data of prenylated tryptophans generated in study.

Compound	Molecular Formula	Ionization	Calculated Mass (<i>m/z</i>)	Observed Mass (<i>m/z</i>)
3b	$C_{16}H_{21}N_2O_2$	$[M + H]^{+}$	273.1598	273.1589
3c	$C_{16}H_{21}N_2O_2$	$[M + H]^{+}$	273.1598	273.1589
3d	$C_{16}H_{21}N_2O_2$	$[M + H]^+$	273.1598	273.1591

Table S3. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectroscopic data of (2*S*)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid **3b** (d_6 -DMSO).

Residue	Position	5'						
		4' 0 10 0 10 0 10 0 H 10 0 10 0 H 5 7 7 0 NH						
		<i>δ</i> c, type	$\delta_{\rm H}$ mult (<i>J</i> in Hz)					
L-Trp	1 2 3 3a 4 5 6 7 7a 8 9 C=O	82.3, CH 56.9, C 133.2, C 123.2, CH 117.7, CH 127.6, CH 124.2, CH 148.8, C 40.4, CH ₂ 59.2, CH 172.2, C	6.34, s 4.76, s 6.99, d (7.3) 6.58, t (7.6) 6.93, t (7.6) 6.48, d (7.7) 2.36 - 2.30, m 2.21, dd (12.9, 5.6) 3.71, dd (8.5, 5.7)					
DIVIA	1' 2' 3' 4' 5'	36.0, CH₂ 119.7, CH 133.6, C 17.8, CH₃ 25.7, CH₃	2.28, m 5.04, t (7.2) 1.51, s 1.63, s					

Assignments supported by 2D COSY, HSQC, HMBC experiments and by comparison with related compounds from literatures. *a*see Supporting NMR Spectral Data. DMA, dimethylallyl.

Table S4. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectroscopic data of (*S*)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1*H*-indol-3-yl)propanoic acid **3c** and 1-(3-methylbut-2-en-1-yl)-L-tryptophan **3d** (d_6 -DMSO).

Residue	Positn	5 6 7 5' 3'	4' (C7) 3c ^a	O 10 0 10 0 NH ₂ 6 7a N1 1' 5' (N1) 3d ^a						
		δc, type	δ _{H,} mult (<i>J</i> in Hz)	δ _c , type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)					
L-Trp	1 2 3 4 5 6 7 7 8 9 C=O 1' 2' 3' 4'	123.9, CH 109.7, C 127.1, C 116.0, CH 118.6, CH 120.0, CH 124.2, C 135.0, C 27.1, CH ₂ 54.4, CH 169.8, C 29.0, CH ₂ 122.2, CH 131.9, C 17.7, CH ₃	10.80, s 7.18, s 7.18, s 7.38, d (7.7) 6.91, t (7.5) 6.84, d (6.9) 2.93, dd (15.1, 9.1) 3.31 – 3.26, m 3.51, m 3.51, d (7.2) 5.42, t (7.3)	127.0, CH 109.2, C 127.7, C 118.7, CH 118.4, CH 121.0, CH 109.7, CH 135.9, C 27.0, CH ₂ 54.7, CH 169.6, C 43.4, CH ₂ 120.6, CH 134.9, C 17.8, CH ₂	7.17, s 7.57, d (7.9) 7.01, t (7.4) 7.11, t (7.6) 7.35, d (8.2) 2.93, dd (15.1, 8.8) 3.27, bm 3.49, bm 4.69, d (6.7) 5.32, t (6.8) 1.81, s					

Assignments supported by 2D COSY, HSQC, HMBC experiments and by comparison with related compounds from literatures. *a*see Supporting NMR Spectral Data. DMA, dimethylallyl.

Table S5. Residues that align with PriB His312 (position 1) and Tyr364 (position 2) present in selected indole prenyltransferases.

Enzyme	Position 1	Position 2
PriB ^[1]	His312	Tyr364
DMATS1 ^[2]	Tyr334	Tyr389
AmbP3 ^[3]	Tyr168	Tyr225
FtmPT1 ^[4]	Tyr382	Tyr435
CdpNPT ^[5]	Tyr366	Trp319
AnaPT ^[6]	Tyr357	Trp410
FgaPT2 ^[7]	Tyr345	Tyr398
5DMATSsc ^[8]	Tyr274	Tyr326
MpnD ^[9]	Tyr300	Phe350
IptA ^[10]	His294	Tyr346
6DMATSsa ^[11]	His284	Tyr336
6DMATSsv ^[11]	His287	Tyr339
6DMATSmo ^[8]	Tyr277	His329
AtmD ^[12]	Tyr346	His397
JanD ^[13]	Tyr350	His402
PaxD ^[14]	Tyr349	His401

IV-Supporting References

- S. I. Elshahawi, H. Cao, K. A. Shaaban, L. V. Ponomareva, T. Subramanian, M. L. Farman, H. P. Spielmann, G. N. Phillips, J. S. Thorson, S. Singh, *Nat. Chem. Biol.* 2017, 13, 366–368.
- [2] S. A. Eaton, T. A. Ronnebaum, B. W. Roose, D. W. Christianson, *Biochemistry* 2022, 61, 2025–2035.
- [3] C. P. Wong, T. Awakawa, Y. Nakashima, T. Mori, Q. Zhu, X. Liu, I. Abe, *Angew. Chem.* **2018**, *57*, 560–563.
- [4] M. Jost, G. Zocher, S. Tarcz, M. Matuschek, X. Xie, S.-M. Li, T. Stehle, J. Am. Chem. Soc. 2010, 132, 17849–17858.
- [5] J. Chen, H. Morita, R. Kato, H. Noguchi, S. Sugio, I. Abe, *Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun.* **2012**, *68*, 355–358.
- [6] X. Yu, G. Zocher, X. Xie, M. Liebhold, S. Schütz, T. Stehle, S.-M. Li, Chem. Biol. 2013, 20, 1492–1501.
- [7] U. Metzger, C. Schall, G. Zocher, I. Unsöld, E. Stec, S.-M. Li, L. Heide, T. Stehle, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 14309–14314.
- [8] E. Ostertag, L. Zheng, K. Broger, T. Stehle, S.-M. Li, G. Zocher, J. Mol. Biol. 2021, 433, 166726.
- [9] T. Mori, L. Zhang, T. Awakawa, S. Hoshino, M. Okada, H. Morita, I. Abe, *Nat. Commun.* 2016, 7, 10849.
- [10] H. Suemune, D. Nishimura, K. Mizutani, Y. Sato, T. Hino, H. Takagi, Y. Shiozaki-Sato, S. Takahashi, S. Nagano, *Biochem. Biophys. Res. Commun.* 2022, 593, 144–150.
- [11] J. Winkelblech, S.-M. Li, Chembiochem 2014, 15, 1030–1039.
- [12] C. Liu, A. Minami, M. Noike, H. Toshima, H. Oikawa, T. Dairi, *Appl. Environ. Microbiol.* 2013, 79, 7298–7304.
- [13] M. J. Nicholson, C. J. Eaton, C. Stärkel, B. A. Tapper, M. P. Cox, B. Scott, *Toxins* **2015**, *7*, 2701–2722.
- [14] C. Liu, M. Noike, A. Minami, H. Oikawa, T. Dairi, Appl. Microbiol. Biotechnol. 2014, 98, 199– 206.

V-Supporting Mass and NMR Spectra

 ^1H NMR (D2O, 400 MHz) of dimethylallyl diphosphate 2.

³¹P NMR (D₂O, 164 MHz) of dimethylallyl diphosphate 2.

 $\label{eq:linear} LC-HR-ESI-MS \ of \ (2S)-3a-(3-methylbut-2-en-1-yl)-1, 2, 3, 3a, 8, 8a-hexahydropyrrolo[2, 3-b] indole-2-carboxylic \ acid \ \mathbf{3b}.$

¹H NMR spectrum (d_6 –DMSO, 400 MHz) of (2S)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (d_6 –DMSO) **3b**.

¹³C NMR spectrum (d_6 –DMSO, 100 MHz) of (2S)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (d_6 –DMSO) **3b**.

¹H-¹H COSY NMR spectrum (d_6 -DMSO, 400 MHz) of (2*S*)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (d_6 -DMSO) **3b**.

 1 H - 13 C HSQC spectrum (DMSO-*d6*, 400 MHz) of (2*S*)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (*d*6–DMSO) **3b**.

¹H-¹³C HMBC NMR spectrum (*d*₆–DMSO, 400 MHz) of (2*S*)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (*d*₆–DMSO) **3b**. Significant correlations are highlighted.

¹H-¹H NOESY NMR spectrum (d_6 –DMSO, 400 MHz) of (2S)-3a-(3-methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (d_6 –DMSO) **3b**. One significant correlation is highlighted.

LC-HR-ESI-MS of (S)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)propanoic acid 3c.

¹H NMR spectrum (d_6 -DMSO, 400 MHz) of (S)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)propanoic acid **3c**.

 13 C NMR spectrum (*d*₆–DMSO, 100 MHz) of (*S*)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1*H*-indol-3-yl)propanoic acid **3c**.

¹H-¹H COSY NMR spectrum (d_6 -DMSO, 400 MHz) of (S)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)propanoic acid **3c**.

 1 H - 13 C HSQC spectrum (DMSO-*d6*, 400 MHz) of (*S*)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1*H*-indol-3-yl)propanoic acid **3c**.

¹H-¹³C HMBC NMR spectrum (d_6 -DMSO, 400 MHz) of (S)-2-amino-3-(7-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)propanoic acid **3c**. Significant correlations are highlighted.

LC-HR-ESI-MS of 1-(3-methylbut-2-en-1-yl)-L-tryptophan 3d.

¹H NMR spectrum (d_6 –DMSO, 400 MHz) of 1-(3-methylbut-2-en-1-yl)-L-tryptophan **3d**.

 ^{13}C NMR spectrum (d_6–DMSO, 100 MHz) of 1-(3-methylbut-2-en-1-yl)-L-tryptophan **3d**.

¹H-¹H COSY NMR spectrum (d_6 -DMSO, 400 MHz) of 1-(3-methylbut-2-en-1-yl)-L-tryptophan **3d**.

¹H -¹³C HSQC spectrum (DMSO-*d6*, 400 MHz) of 1-(3-methylbut-2-en-1-yl)-L-tryptophan **3d**.

¹H-¹³C HMBC NMR spectrum (*d*₆–DMSO, 400 MHz) of 1-(3-methylbut-2-en-1-yl)-L-tryptophan **3d**. Significant correlations are highlighted.