10,753 research outputs found

    The high-pressure behavior of CaMoO4

    Full text link
    We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.Comment: 36 pages, 10 figures, 8 table

    Modelling and Nonlinear Model Predictive Control of a Twin Screw Feeder

    Get PDF
    In this work, a dynamic model of a twin screw feeder, for continuous tablet manufacturing, has been developed. In particular, a First Order Plus Dead Time (FOPDT) model has been suggested. The delayed dynamics depends on operating conditions, equipment design and physical properties of the bulk solid. Model parameters are estimated by fitting the model to experimental data. Due to the nonlinear input-output relationships and the time delays involved, a Nonlinear Model Predictive Control (NMPC) is investigated to maintain an accurate mass flow rate, with the ultimate goal to improve product homogeneity in an inherently complex process. The performance of the designed control system is found to be satisfactory in a wide operating range and its potential use in a continuous manufacturing process is worth being investigated in the future

    Semi-empirical model of twin screw feeders for continuous pharmaceutical tablet manufacturing process

    Get PDF

    Critical Behavior of a Three-State Potts Model on a Voronoi Lattice

    Full text link
    We use the single-histogram technique to study the critical behavior of the three-state Potts model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8000 sites. We consider the effect of an exponential decay of the interactions with the distance,J(r)=J0exp(ar)J(r)=J_0\exp(-ar), with a>0a>0, and observe that this system seems to have critical exponents γ\gamma and ν\nu which are different from the respective exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν\gamma/\nu remains essentially the same. We find numerical evidences (although not conclusive, due to the small range of system size) that the specific heat on this random system behaves as a power-law for a=0a=0 and as a logarithmic divergence for a=0.5a=0.5 and a=1.0a=1.0Comment: 3 pages, 5 figure

    Fifteen years of XMM-Newton and Chandra monitoring of Sgr A*: Evidence for a recent increase in the bright flaring rate

    Get PDF
    We present a study of the X-ray flaring activity of Sgr A* during all the 150 XMM-Newton and Chandra observations pointed at the Milky Way center over the last 15 years. This includes the latest XMM-Newton and Chandra campaigns devoted to monitoring the closest approach of the very red Br-Gamma emitting object called G2. The entire dataset analysed extends from September 1999 through November 2014. We employed a Bayesian block analysis to investigate any possible variations in the characteristics (frequency, energetics, peak intensity, duration) of the flaring events that Sgr A* has exhibited since their discovery in 2001. We observe that the total bright-or-very bright flare luminosity of Sgr A* increased between 2013-2014 by a factor of 2-3 (~3.5 sigma significance). We also observe an increase (~99.9% significance) from 0.27+-0.04 to 2.5+-1.0 day^-1 of the bright-or-very bright flaring rate of Sgr A*, starting in late summer 2014, which happens to be about six months after G2's peri-center passage. This might indicate that clustering is a general property of bright flares and that it is associated with a stationary noise process producing flares not uniformly distributed in time (similar to what is observed in other quiescent black holes). If so, the variation in flaring properties would be revealed only now because of the increased monitoring frequency. Alternatively, this may be the first sign of an excess accretion activity induced by the close passage of G2. More observations are necessary to distinguish between these two hypotheses.Comment: Accepted for publication in MNRA

    Projected single-spin flip dynamics in the Ising Model

    Get PDF
    We study transition matrices for projected dynamics in the energy-magnetization space, magnetization space and energy space. Several single spin flip dynamics are considered such as the Glauber and Metropolis canonical ensemble dynamics and the Metropolis dynamics for three multicanonical ensembles: the flat energy-magnetization histogram, the flat energy histogram and the flat magnetization histogram. From the numerical diagonalization of the matrices for the projected dynamics we obtain the sub-dominant eigenvalue and the largest relaxation times for systems of varying size. Although, the projected dynamics is an approximation to the full state space dynamics comparison with some available results, obtained by other authors, shows that projection in the magnetization space is a reasonably accurate method to study the scaling of relaxation times with system size. The transition matrices for arbitrary single-spin flip dynamics are obtained from a single Monte-Carlo estimate of the infinite temperature transition-matrix, for each system size, which makes the method an efficient tool to evaluate the relative performance of any arbitrary local spin-flip dynamics. We also present new results for appropriately defined average tunnelling times of magnetization and compute their finite-size scaling exponents that we compare with results of energy tunnelling exponents available for the flat energy histogram multicanonical ensemble.Comment: 23 pages and 6 figure

    The Primeval Populations of the Ultra-Faint Dwarf Galaxies

    Get PDF
    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.Comment: Accepted for publication in The Astrophysical Journal Letters. Latex, 5 pages, 2 color figures, 1 tabl
    corecore